
Beliefs in echo chambers∗

Pranjal Bhushan† Abhinash Borah‡ Siddarth Venkatesh‡

January 7, 2025

Abstract

We introduce an interactive model of belief formation and transmission within
echo chambers. Individuals in our model have subjective core beliefs, but these are
not the same as the beliefs underlying their behavior. An individual’s behavioral
beliefs incorporate her core beliefs but are also influenced by the behavioral beliefs
of others within her echo chamber. Therefore, echo chambers feature interactive
behavioral beliefs with any individual’s beliefs both being influenced by as well as
influencing the beliefs of others in her echo chamber. The echo chamber representa-
tion of a profile of such behavioral beliefs that we propose captures the steady state
of this process of interaction and influence. We show that the model is falsifiable by
characterizing it based on two axioms. The first emphasizes the need for conformity
when it comes to assessments about certain events, while the second highlights the
possibility of differing behavioral beliefs about uncertain events and the potential
for everyone to exercise influence. We also analyze when the model permits exact
identification, i.e., when can an analyst draw on the profile of behavioral beliefs to
uniquely identify the composition of the echo chambers in society, the core beliefs of
different individuals, and the degree to which each of them is immune to influence.
Further, we provide an observational learning foundation for our theory by incor-
porating sequential arrival of private information into the DeGroot (1974) model.
We use this foundation to provide a novel theory of interactive belief updating for
non-Bayesian decision-makers.
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1 Introduction

Research across several disciplines has shown that echo chambers that form in society
impact a range of important social and economic outcomes like polarization, populism,
inequality, and asset prices in financial markets (Barberá 2020; Cookson et al. 2023;
McCarty et al. 2006). A key reason echo chambers drive these outcomes is the beliefs
that form within them and how they get transmitted. This paper looks at beliefs formed
within echo chambers. Specifically, we propose a theory of interactive beliefs within
echo chambers that capture how individual beliefs are formed based both on subjective
assessments of uncertainty that incorporates private information as well as the influence
cast by popular perceptions within one’s echo chamber that encourages conformism.

Our theory builds on the following idea. We consider a society that is partitioned into
a set of echo chambers. Each individual in society has some core beliefs over the states
of the world that captures her subjective assessment of uncertainty and incorporates her
private information. However, her behavior is not determined exclusively by her core
beliefs. Rather, her behavioral beliefs also draw on the overall beliefs prevailing within
her echo chamber. Specifically, we model an individual’s behavioral beliefs as a weighted
average of her core beliefs and the average behavioral beliefs in her echo chamber. The
weight put on the former measures the degree to which she is immune from her echo
chamber’s influence and is an important behavioral parameter. Echo chambers, therefore,
feature interactive behavioral beliefs with an individual’s beliefs both being influenced
by and at the same time influencing the beliefs of others in her echo chamber. The echo
chamber representation of a profile of such behavioral beliefs that we introduce in this
paper captures the steady state of this process of interaction and influence.

The substantive work that we undertake in this paper addresses several important ques-
tions about this interactive process. First, we show that our interactive model of beliefs
is falsifiable by providing a precise characterization of the steady state beliefs underlying
an echo chamber representation. That is, consider an analyst who has data on the be-
havioral beliefs of individuals in society, say, from observing their betting behavior. Our
characterizing conditions establish the restrictions that this data must satisfy for her to
conclude that this profile of beliefs is consistent with the echo chamber model. Second,
we show the extent to which the model parameters—the echo chambers that form, each
individual’s core beliefs and their susceptibility to influence—can be uniquely identified
from behavioral beliefs. Third, we provide an observational learning foundation for the
echo chamber model. We do so by incorporating private information into a standard
DeGroot (1974) learning process. Finally, we use these foundations for the echo chamber
model to propose a theory of interactive belief updating that combines Bayesian updating
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of core beliefs with naive observational learning, where the key source of naivety stems
from the way in which the process of interaction and influence results in information not
being fully incorporated into updates and the failure to recognize this.

Our characterizing conditions highlight the key restrictions underlying interactive belief
formation. The first condition is called certainty conformism. It says that for any decision
maker (DM) to assign probability one to an event according to her behavioral beliefs, i.e.,
behave as if she is certain about it, she must have the confirmation of at least someone
else who does likewise, with this process being mutual. This captures a key behavioral
restriction of the echo chamber model. No DM can behave as if she is sure about an
event on her own. She can do so only when there are others (her revealed friends) who
do so. This therefore generates conformity when it comes to sure events. At the same
time our second condition, called subjective assessment of uncertainty, makes the point
that inter-personal interactions in an echo-chamber is not just about conformity. Rather,
such interactions also incorporate the possibility of individuals having different behavioral
beliefs about uncertain events from that of their friends, thus revealing the potential for
mutual influence.

Together, these two conditions connect interesting themes across the literatures on social
influence and decisions under risk. Keeping with the former, the axioms reiterate that
social influence is not just about conformity, but also about inter-personal differences that
open the scope for differential influence. When it comes to the latter, the axioms highlight
the point that sure events may be viewed qualitatively differently by DMs than uncertain
events. The need for complete conformity is restricted only to sure events and doesn’t
necessarily spill over to events about which people maintain a degree of uncertainty. This
qualitative distinction between sure events and uncertain events resonates with similar
distinctions that have been made in the context of theories like rank dependent utility and
prospect theory, which draw on non-linear probability weighting, in especially pronounced
ways around unit (and zero) probability events, and in such observed phenomenon like
the certainty effect.

We provide another foundation for echo chamber beliefs by showing how they emerge
as the limiting beliefs under a process of DeGroot learning, where agents sequentially
receive private information. Our two characterizing conditions above, therefore, provide
a fresh perspective on characterizing DeGroot learning with private information in an
environment where the analyst doesn’t have the opportunity to observe the entire ob-
servational learning path but potentially only the steady state beliefs that result from
such a process. Of course, such a perspective makes sense only if the sequence in which
private information arrives doesn’t affect the steady state beliefs. This is indeed true
for the observational learning process underlying the echo chamber model. This distin-
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guishes our learning story from other adaptations of the DeGroot model to incorporate
sequential arrival of private information in which steady state beliefs are not invariant to
the sequence in which information arrives (e.g., Reshidi (2024)).

We use our observational learning setup to analyze how behavioral beliefs respond to a
single release of private information. Beliefs respond to information through two channels.
The direct effect arises from Bayesian updating of core beliefs. The echo effect is a
result of naïvely accounting for changes in the behavioral beliefs of others in the echo
chamber. The two effects together result in behavioral beliefs that tend to be sticky,
with individuals failing to fully incorporate private information unless everyone in the
echo chamber receives the same information. This stickiness results in the persistence of
beliefs inspite of new evidence, increasing the susceptibility of individuals to confirmation
bias. In the context of majority voting in a common value setting, this results in sub-
optimal outcomes due to incorrect aggregation of information with a greater probability
than in the absence of influence, while also making restrictions on the information source
more stringent for the wisdom of the crowd to prevail.

The literature on echo chambers is primarily divided between examining the process of
segregation into homogeneous groups and the transmission of beliefs and biases through
these groups thereafter. Segregation into various groups is attributed to a variety of rea-
sons, including economic, social, and cultural (Levy and Razin 2019). Baccara and Yariv
(2016) examine the conditions under which segregation results either in homogeneous
groups or polarization. Our model assumes the segregation of society into echo chambers
to be exogenous, and we shift our focus to the transmission of beliefs within existing
clusters, and provide behavioral identification and characterization of this process.

There is a substantial body of recent literature that studies the process of social influence
from a choice theoretic perspective (Fershtman and Segal 2018; Kashaev and Lazzati
2019; Lazzati 2020; Borah and Kops 2018; Chambers et al. 2019; Chambers et al. 2021;
Cuhadaroglu 2017). In particular, the structure of our model draws inspiration from
Fershtman and Segal (2018). Whereas we model influence through belief transmission,
they look at influence in tastes. They consider two sets of preferences for each individual,
represented by her core and behavioral utilities, and an influence function such that
her behavioral utilities can be represented as a function of her core utility and others’
behavioral utilities. Analogous to their model, core beliefs are private and behavioral
beliefs are observable in our model.

Our work also connects with an extensive literature on social learning. Boundedly rational
learning mechanisms have been argued to have both positive and negative effects on the
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accuracy of beliefs.1 For instance, Glaeser and Sunstein (2009) outline situations in which
such learning mechanisms propagate extremism in beliefs. Conversely, Martinez and
Tenev (2024) argue that restricting information acquisition within echo chambers could
actually improve the process of learning if the quality of various sources of information is
uncertain. Likewise, Levy and Razin (2015a, 2015b) argue that correlation neglect does
not necessarily increase polarisation in voting outcomes and might improve the accuracy
of voting relative to a rational electorate. Acemoglu et al. (2014) characterize conditions
under which social cliques can assist in asymptotic learning when costly communication
networks are formed endogenously.

A common feature in the models detailed above is that private information or signals
can be shared through the network. In contrast, a very popular strand of the literature
details heuristics that may be used to learn from observed beliefs (DeGroot 1974; De-
Marzo et al. 2003; Friedkin and Johnsen 1990; Levy and Razin 2018). Our model of
behavioral beliefs and the underlying observational learning process are closely linked to
such learning rules. Eyster and Rabin (2010) also model individuals who learn by se-
quentially observing the actions of those who immediately precede them. They find that
when agents erroneously assume that the actions of their predecessors are based solely
on private information, they may converge to incorrect actions with confidence. On the
contrary, Bala and Goyal (1998) outline a rational process of local learning that may
facilitate convergence to optimal actions under certain neighborhood structures. They
find that the existence of highly influential nodes hinders accurate aggregation, similar
to the conditions necessary for wise societies in the DeGroot model, as detailed by Golub
and Jackson (2010).

The rest of the paper is organized as follows. The next section introduces our setup
and formally defines an echo chamber representation. Section 3 provides the grounds
for falsifiability of the model by characterizing it based on two conditions. Section 4
details the analysis of the identification of the model parameters. Section 5 presents the
observational learning foundation of the model. Finally, in Section 6, we analyze the
process of belief updating in our model and its application to information aggregation
and voting. Proofs of all results are available in the Appendix.
1There is also a large class of papers that detail Bayesian models of social learning (e.g. Acemoglu
et al. 2011, Jiménez-Martínez 2015, Azomahou and Opolot 2014). However, they tend to be both
intractable and too demanding of observed behavior.
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2 Setup

2.1 Primitives

Let S be a finite set of states, with any subset of S referred to as an event. Our stylized
society consists of a set I = {1, . . . , n} of individuals. Each individual i ∈ I is probabilis-
tically sophisticated and her behavior over uncertain prospects is guided by a probability
distribution πi over the state space. We refer to this probability determining her behav-
ior as her behavioral beliefs. We assume that an analyst or outside observer is able to
observe these behavioral beliefs, say, from observing her betting behavior. Accordingly,
the profile of behavioral beliefs (πi)i∈I is data for the analyst.

2.2 Echo chamber representation

We now lay out our theoretical representation of interactions in the model that determine
the behavioral beliefs of individuals. To that end, assume that the set of individuals in I

are partitioned into the sets E = ⟨E1, . . . , Ek⟩, with each element of the partition denoting
an echo chamber (or chamber, for short) in society. To keep the setup meaningful, we
assume that none of the echo chambers is a singleton. For any i ∈ I, we let E(i) denote
the echo chamber to which individual i belongs.

An individual’s behavioral beliefs are formed both from her independent perception about
the underlying uncertainty as well as the influence cast by the echo chamber she is a
part of. Specifically, we assume that any such decision maker (DM), i ∈ I, is endowed
with some core beliefs µi on S. Behavioral beliefs, of course, depend on core beliefs. But
additionally, the working of influence within her echo chamber implies that her behavioral
beliefs may be influenced by her perception of the overall beliefs prevailing in her echo
chamber. We consider the average behavioral belief prevailing within her echo chamber,

1
|E(i)|

∑
j∈E(i) πj, as an aggregate summary statistic capturing this aspect of influence.

One may think of this aggregate as the echo generated in the process of interactive belief
formation.2 We assume that the dependence on the two takes a linear weighted average
form, with the weights determined by a parameter αi ∈ (0, 1) that captures the degree to
which this DM is immune to influence, i.e., higher is αi, the less susceptible is this DM
2To understand better the idea behind the echo, suppose there is a change in the core beliefs of a DM
i, say, due to fresh information she receives. This would clearly impact her behavioral beliefs and, in
doing so, impact the behavioral beliefs of all others in her chamber, given the interactive nature of these
beliefs. But, at the same time, the change induced in the behavioral beliefs of others would in turn
bounce back like an echo and further influence i’s behavioral beliefs, and so forth.
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to influence. Specifically, for any event A ⊆ S, we assume that her behavioral belief is
given by,

Behavioral belief︷ ︸︸ ︷
πi(A) = αi µi(A)︸ ︷︷ ︸

Core belief

+ (1− αi)
1

|E(i)|
∑

j∈E(i)

πj(A)︸ ︷︷ ︸
Echo

This, therefore, makes behavioral beliefs interactive within an echo chamber. Our repre-
sentation of the profile of behavioral probabilities (πi)i∈I provides a formal statement of
these interactions. It captures the steady state of this process of interactions by requiring
mutually consistent behavioral beliefs within an echo chamber.

Definition 1. The profile of behavioral probability measures (πi)i∈I on S has an echo
chamber representation if there exists a partition E = ⟨E1, E2, ..., Ek⟩ of I, and for
each i ∈ I:

• a core probability measure µi on S, and

• an immunity from influence parameter αi ∈ (0, 1)

such that (πi)i∈I can be defined as a solution to the system of equations,

πi(A) = αiµi(A) + (1− αi)
1

|E(i)|
∑

j∈E(i)

πj(A), i ∈ I,

Like in any equilibrium or steady state notion, we close the interactions by assuming that
individuals hold correct expectations about the behavioral beliefs of others in their echo
chamber. This allows them to correctly forecast the average behavioral belief about any
event in their echo chamber.

We also focus on a subclass of echo chamber representations that identify the maximum
extent of influence consistent with a given profile of behavioral beliefs. Observe that there
are two channels that mediate the scope of influence in an echo chamber representation.
The first is through the magnitude of the immunity of influence parameters (αi)i∈I , the
lower these are the greater is the scope of influence on individuals in an echo chamber.
Accordingly, if there are two echo chamber representations with the same echo chamber
partitioning and immunity to influence parameters (αi)i∈I and (α̃i)i∈I , respectively, then
we can say that the first representation doesn’t fully capture the scope of influence con-
sistent with the data if ãi ≤ αi, for all i, holding strictly for some i. The second channel
through which influence work is the size of echo chambers, the larger these are the more
the number of individuals any given individual is influenced by and influences. Therefore,
if under two echo chamber representations, the echo chamber partitioning in the second
is a coarsening of the first, then we say that the first representation doesn’t fully capture
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the scope of influence on this dimension. This motivates the following definition.

Definition 2. An echo chamber representation (E , (µi, αi)i∈I) of (πi)i∈I is α-maximal if
there does not exist another such representation (E , (µ̃i, α̃i)i∈I) of (πi)i∈I s.t. α̃i ≤ αi, for
all i ∈ I, holding strictly for some i. An α-maximal representation (E , (µi, αi)i∈I) is max-
imal influence if there does not exist another α-maximal representation (Ẽ , (µ̃i, α̃i)i∈I)

s.t. Ẽ is a coarsening of E.

Remark 1 (Existence). It is straightforward to establish that the steady state notion
captured by the echo chamber representation doesn’t suffer from concerns about non-
existence. That is, given a collection (µi)i∈I of core beliefs, it is immediate to establish
that there exists a collection of behavioral beliefs (πi)i∈I that simultaneously satisfy the
system of equations:

πi(A) = αiµi(A) + (1− αi)
1

|E(i)|
∑

j∈E(i)

πj(A), i ∈ I

To see this, note that the equation determining the behavioral beliefs of individual i,
depends only on the beliefs of the individuals belonging to E(i). Thus, it is sufficient to
prove existence for a single echo chamber. Given a chamber E, subtract both sides by
the average behavioral belief, and sum over all i ∈ E to yield:

1

|E|
∑
j∈E

πj(A) =
∑
i∈E

αiµi(A)∑
j∈E αj

Substituting this expression in the earlier system of equations, we get:

πi(A) = αiµi(A) + (1− αi)
∑
j∈E

αjµj(A)∑
l∈E αl

This process can be used for each echo chamber, and the resulting collection (πi)i∈I satis-
fies the system of equations. Since this is also true of all (πi)i∈I that solve the equations,
given a collection of (µi)i∈I , (αi)i∈I and partition E = ⟨E1, ..., Ek⟩, the resultant (πi)i∈I
must additionally be unique.

Remark 2 (Elite influence and α). A key feature that our model demonstrates with
respect to the immunity parameter, α, is that within each echo chamber, the individuals
who are the least influenced (high α-s) happen to be the ones who end up having the
greatest influence in terms of shaping beliefs within their echo chamber. This is in line
with a theme that has featured prominently in recent times: elite influence. For instance,
it has been pointed out in the context of partisan politics that each side of the partisan
divide has elites who have a disproportionate influence on their respective sides. In
other words, when there is influence at play, it is typically marked by a great degree of
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heterogeneity in terms of the ability to influence. Such an effect shows up in our model.

The nature of linear influence in the model gives the average behavioral belief in the echo
chamber a unique structure. Recall the following expression for this average belief we
derived in Remark 1:

πi(A) =
∑

j∈E(i)

αj∑
k∈E(i) αk

µj(A)

That is, the average belief in an echo chamber can be represented as the weighted average
of core beliefs, with the weights capturing relative influence. In particular, the weight
attached to i’s core belief is given by αi∑

k∈E(i) αk
. It is relative because it depends on the

ratio of the DM’s own αi to the sum of all αj in her chamber. It also measures the degree
of influence as the more a DM is immune to influence, the greater the weight placed
on her core belief in the determination of the average behavioral belief. However, the
more others are immune from influence, the more they influence the average belief, thus
reducing the relative influence exhibited by the DM. A way of capturing the influence
exhibited by a DM is the difference between her core beliefs and the average behavioral
beliefs, which is expressed as follows.

|πi(A)− µi(A)| =

∣∣∣∣∣∣ 1∑
k∈E(i) αk

 ∑
j∈E(i)\{i}

αj(µj(A)− µi(A))

∣∣∣∣∣∣
This is a measure of her influence because it captures how close average behavioral beliefs
in her echo chamber are pulled towards her core beliefs. Note that the difference is
decreasing in αi, and for any collection (µi)i∈I , the average behavioral belief is influenced
more by i’s core belief if she is more immune to influence.

3 Characterization

3.1 Maximal influence echo chamber representation

We now show that maximal influence echo chamber representations can be characterized
by two axioms. The first of these axioms spells out the key constraint that influence
imposes on a DM’s behavioral beliefs. It says that a DM is constrained by influence
to think of an event as sure only if there exists at least some other individual who
does likewise, with this influence being mutual. In other words, even if an individual
fundamentally thinks of an event as sure by her core beliefs, it is not guaranteed to
translate into her behavior unless it receives conformity from others, with this process of
conformity being mutual.
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Axiom A1 (Certainty conformism). For all i ∈ I, there exists j ∈ I, j ̸= i, such that,
for any event A ⊆ S, πi(A) = 1 if and only if πj(A) = 1.

The first axiom incorporates the idea of conformism, which the literature identifies as a
key marker of social influence. When specialized to our current context, such conformism
is seen on behavioral probabilistic judgments about sure events.

Our second axiom, on the other hand, reinforces the message that inter-personal inter-
actions of influence need not be just about conformity. There is scope for any individual
influencing the beliefs of others she interacts with and not just mimicking them. To
present this axiom, we first introduce a definition. We define the revealed neighborhood
of any i ∈ I by

N(i) = {j ∈ I \ {i} : πi(A) = 0 ⇐⇒ πj(A) = 0, for any event A}

The idea behind this revealed elicitation is quite straightforward. An individual is pre-
sumably connected to those individuals who she seeks conformity from. Hence, these
individuals form her neighborhood in the social network of interacting beliefs. Observe
that, the certainty conformism axiom guarantees that N(i) is non-empty for any i. Now
for any J ⊆ I, and any event A, denote the average behavioral belief about A amongst
individuals in J by

πJ(A) =
1

|J |
∑
j∈J

πj(A)

Axiom A2 (Subjective assessment of uncertainty). For all i ∈ I, there exists an event
A such that πN(i)(A) ̸= πN(i)∪{i}(A)

The axiom highlights the point that any i ∈ I is not simply a passive recipient of the
probabilistic judgments of her neighbors. Rather, her presence may also change the
average beliefs prevailing in her neighborhood in as much as there exists at least some
event in which the average belief in her neighborhood with and without her is different.
Equivalently, on this event, i’s behavioral belief is different from the average behavioral
belief in her neighborhood, i.e., πi(A) ̸= πN(i)(A). Observe that, given what the first
axiom says, such influence that i casts is necessarily for events that she and everyone in
her neighborhood share a degree of uncertainty over. The axiom can also be seen in the
light of “maximality" of influence. It implies that all individuals cast some influence on
the formation of beliefs. There is no individual who is simply the recipient of influence.

We can now present our behavioral characterization result.

Theorem 1. The behavioral probability profile (πi)i∈I has a maximal influence echo cham-
ber representation if and only if it satisfies certainty conformism and subjective assessment
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of uncertainty.

Proof : Please refer to Appendix Section A.4

3.2 Inter (Intra) chamber restrictions on core beliefs

The primitives of our model do not impose any interpersonal restrictions on the core
beliefs of individuals, neither within an echo chamber nor across chambers. In reality,
one would imagine that these beliefs may be inter-related to some extent. Presumably,
a necessary condition for individuals coming together and forming an echo chamber is
some minimal agreement in their core beliefs, especially when it comes to perceptions
about certainty, with this agreement not shared by those outside the chamber. This is
in the spirit of belief-based homophily. At the same time, for these echo chambers to
retain their salience, pathways of influence must exist within them and it is this influence
that serves as a glue holding them together. But for influence to operate, there also
needs to be disagreements within the echo chamber that opens up the scope for such
influence. In other words, we would imagine that the functioning of echo chambers
incorporate both inter-chamber and intra-chamber disagreements over core beliefs. It
is, therefore, interesting to note that one of the things that the characterization of the
maximal influence echo chamber model brings to the forefront is that such notions of
disagreements are embedded in this class of representations.

To state these observations formally, we introduce some terminology. We say that i is
fundamentally certain about an event A if µi(A) = 1. We say that a chamber E is
fundamentally certain about an event A if µi(A) = 1, for all i ∈ E. We now introduce
two conditions pertaining to disagreements on fundamental certainty (DFC). The first
condition provides a statement about differing views on certainty across echo chambers.

Condition 1 (DFC-Inter). For all chambers E and E ′, there exists an event that one of
the chambers is fundamentally certain about, but the other chamber is not.

As mentioned above, one may think of this as a constitutive condition of echo chambers—
the fact that, at a fundamental level, echo chambers are formed by people who share a
certain view of reality that is not necessarily shared by those outside the echo chamber.
The condition above expresses this idea in a fairly weak form. At the same time, as
noted earlier, just because echo chambers form presumably doesn’t mean that there is
complete agreement on matters of certainty within an echo chamber. Our next condition
captures this viewpoint, leaving open the possibility that there is room for disagreement
and influence within an echo chamber.
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Condition 2 (DFC-Intra). For all i ∈ I, there exists an event she is fundamentally
certain about, but someone in her chamber is not

Theorem 2. Suppose (E = ⟨E1, . . . , Ek⟩, (µi, αi)i∈I) is an echo chamber representation of
(πi)i∈I . (E = ⟨E1, . . . , Ek⟩, (µi, αi)i∈I) is a maximal influence echo chamber representation
iff it satisfies DFC-Inter and DFC-Intra.

Proof: Please refer to Appendix Section A.6

The result establishes that DFC-Inter and DFC-Intra are properties of maximal influence
echo chamber representations and not of echo chamber representations in general. This
adds to the appeal of this sub-class of representations as they implicitly capture intuitive
notions underling echo chamber formation and salience, even though we do not explicitly
model this in our set-up.

3.3 Echo chamber representation

A final detail regarding characterization that the reader may be interested in is about
the characterization of echo chamber representations. It turns out such representations
are characterized simply by certainty conformism.

Theorem 3. The behavioral probability profile (πi)i∈I has an echo chamber representation
if and only if it satisfies certainty conformism.

Proof : Please refer to Appendix Section A.3

4 Identification

We now address the question about the identification of the model parameters. That is,
suppose (πi)i∈I has a maximal influence echo chamber representation. Is this represen-
tation unique, or are multiple such representations possible? The following result shows
that a desirable feature of such a representation is that it is uniquely identified.

Theorem 4. If (E = ⟨E1, . . . , Ek⟩, (µi, αi)i∈I) and (Ẽ = ⟨Ẽ1, . . . , Ẽl⟩, (µ̃i, α̃i)i∈I) are
maximal influence echo chamber representations of (πi)i∈I , then E = Ẽ, and for each
i ∈ I, µi = µ̃i, and αi = α̃i.

Proof: Please refer to Appendix Section A.5
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The exact identification of maximal influence echo chamber representations contrasts
sharply with echo chamber representations where we don’t impose this restriction. Such
representations may not be precisely identified and the best we are able to do is provide
bounds on the echo chamber partitioning and immunity to influence parameters.

We first examine the possible partitionings of society that can be accommodated under
an echo chamber representations of a profile of behavioral probabilities (πi)i∈I . We show
that if E is such a partitioning then for any j ∈ E(i), j ̸= i, j ∈ N(i) = {j ∈ I \ {i} :

πi(A) = 0 ⇐⇒ πj(A) = 0, for any event A}. That is, E(i) must be a subset of N(i)∪{i}
for all i ∈ I. Further, N(i) ∪ {i} is the largest possible echo chamber to which i may
belong.

Proposition 1. If Ẽ =
〈
Ẽ1, ..., Ẽℓ

〉
is a partition of society under an echo chamber

representation of the beliefs (πi)i∈I , then Ẽ(i) ⊆ N(i)∪{i}. Further, if Ẽ(i) ⊆ N(i)∪{i}
and |Ẽ(i)| ≥ 2 for all i ∈ I, then there exists an echo chamber representation of (πi)i∈I
with the partition Ẽ.

Proof: Please refer to Appendix Section A.1

Next, we identify the range for the immunity from influence parameters consistent with
an echo chamber representation of behavioral beliefs and establish a lower bound on these.

Proposition 2. Suppose the collection of behavioral beliefs (πi)i∈I has an echo chamber
representation with the partition E = ⟨E1, ..., Eℓ⟩, and E(i) denoting i’s echo chamber
under E. Then (πi)i∈I has an echo chamber representation with influence parameters
(αi)i∈I iff αi ∈

[
1−min πi(A)

π̄E(i)(A)
, 1
)
∩ (0, 1) for all i ∈ I.

Proof: Please refer to Appendix Section A.2

An insight we can gain from this result is that once we fix a partition E , restrictions on
the influence parameters of any i ∈ I depend only on E(i). However, while the bounds
on these parameters are dependent on E(i), the exact choice is independent of all other
individuals. Particularly, what this means is that if, under some partition E , (αi)i∈I and
(α̃i)i∈I are two collections of influence parameters that can be accommodated under an
echo chamber representations of (πi)i∈I , then so can be (αi, α̃−i) and (α̃i, α−i), for any
i ∈ I.
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5 Behavioral probabilities from observational learning

The next task we undertake is to connect our theory of behavioral probabilities to the
observational learning literature that follows from DeGroot (1974). Indeed, we provide an
observational learning foundation for the echo chamber model as presented in the earlier
sections, and for a theory of belief updating under it that we consider subsequently.
The formulation of observational learning that we propose combines the basic insight
of DeGroot learning with an environment where agents receive private information in
a sequential setting. That is, unlike DeGroot, where agents receive all relevant private
information as captured by their initial beliefs before any communication take place
between them, we consider an environment where interactions and the arrival of private
information overlap.

In the DeGroot model, individuals start with some initial beliefs, π0, and update their
beliefs in every period by taking a weighted average of the last observed beliefs of all
individuals. Let Wij denote the weight that individual i places on the beliefs of individual
j. Wij ≥ 0 for all i, j ∈ I, and

∑
j Wij = 1 for all i ∈ I. Individual i is connected to

j if Wij > 0. These weights remain constant over time, so the updating process can be
written as

πt+1(A) = Wπt(A)

where πt(A) and πt+1(A) are vectors of the beliefs of all individuals about event A in
periods t and t + 1, and W is the n × n matrix of weights.3 In a network where the
subnetwork on each component is strongly connected (true of echo chambers), this model
would imply consensus amongst the individuals of each component (Golub and Jackson
2010). That is limt→∞ πt

i(A) = limt→∞ πt
j(A) for all A ⊆ S if i and j belong to the

same component. We modify this by introducing a component of beliefs purely based on
private information, which is subject to being updated as new information arrives.

In our model, individuals hold distinct private and reported beliefs, which evolve accord-
ing to the process

πt+1(A) = Λµt+1(A) + (In − Λ)Wπt(A)

Here, Λ is a diagonal matrix with Λii ≡ λi, which denotes the weight that individual i
places on her private belief. In is the n×n identity matrix, so she places 1−λi weight on
the DeGroot updated belief. µt+1(A) is the vector of private beliefs about event A, which
is subject to being updated based on new information that may arrive in each period.
3Note, in general, the DeGroot model is used to capture the evolution of scalar beliefs, typically estimates
of parameters, and the convergence of these estimates to a particular value through the updating process.
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Suppose that private information is conveyed to i in each period t < Ti in the form
of a tuple (C, ϕi) for each i ∈ I. C is a finite set of signals and ϕi : S → ∆C is a
mapping that defines the probability, ϕs

i (c), of individual i observing the signal c ∈ C,
conditional on the true state being s. A single signal is perfectly informative if ϕi is an
injective mapping and maps to degenerate distributions in ∆C. Signals are completely
uninformative if ϕi is a constant mapping. Individuals hold some initial private beliefs
(µ0

i )i∈I and update these beliefs every period upon receiving new information according to
Bayes rule.4 We maintain that signals cannot be conveyed to anyone else, which means
that every individual’s private beliefs are updated using only the signals they receive.
Any communication of information occurs purely through reported beliefs. Furthermore,
if no new information is conveyed to an individual, her private beliefs remain unchanged.

Denote individual i as having a link to j if Wij > 0. Since the beliefs of individuals
depend only on the beliefs of individuals to whom they have a path, we can reduce our
analysis to a single component, E, at once.5 The updating process is then reduced to

πt+1
E (A) = ΛEµ

t+1
E (A) + (I|E| − ΛE)WEπ

t
E(A)

Since we are interested in cluster networks, we analyze a particular restriction of this
model with an undirected, unweighted network, in which individuals in the same compo-
nent always have a direct link to each other. That is, the subnetwork on each component
is complete. Let E = ⟨E1, ..., Ek⟩ denote the partition of I into components. Supposing
that individuals account for their own beliefs as well in the component average, the ad-
jacency matrix G can be represented with Gii = 1, and the weighting matrix W is the
degree-adjusted adjacency matrix.6 The weighting matrix, WE, for the component E is
then |E|−11|E|,7 and an individual’s reported beliefs are updated every period according
to

πt+1
i (A) = λiµ

t+1
i (A) + (1− λi)

1∑
j∈I Gij

∑
j∈I;Gij=1

πt
j(A)

Since the stream of private information is finite, the sequence of private beliefs {µt(A)}∞t=0

is eventually constant for any possible realization of signals and each A ⊆ S. Building on
this fact, we show that {πt(A)}∞t=0 converges to some π for all initial reported beliefs π0.
We then establish that π is a profile of behavioral beliefs that admit an echo chamber
4Given ci as the signal received by i, her updated private belief is given by:

µi(A|ci) =
∑

s∈A µi(s)ϕ
s
i (c

i)∑
s′∈S µi(s′)ϕs′

i (c
i)

5Individuals i and j are in the same component if at least one of them has a path to the other.
6G is the adjacency matrix of the network if Gij = 1 whenever there exists a link between i and j. Each
row in W is obtained by scaling the corresponding row in G such that the row sums to one.

71n is the n× n matrix of ones.
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representation.

Proposition 3. Suppose individuals in network G are divided into complete components
E = ⟨E1, ..., Ek⟩. Given initial private beliefs (µ0

i )i∈I and reported beliefs (π0
i )i∈I , define

reported beliefs for each i ∈ I in period t+ 1, t ∈ Z+, as

πt+1
i (A) ≡ λiµ

t+1
i (A) + (1− λi)

1∑
j∈I Gij

∑
j∈I;Gij=1

πt
j(A)

Then, for each i ∈ I, {πt
i}

∞
t=0 is convergent with limt→∞ πt

i = πi. Furthermore, (πi)i∈I
is the profile of behavioral beliefs that admits an echo chamber representation with pa-
rameters E = ⟨E1, ..., Ek⟩, (µi)i∈I such that µi = µTi

i , and (αi)i∈I with αi = λi for all
i ∈ I.

Proof: Please refer to Appendix Section A.7

Propositon 3 shows that behavioral beliefs in the Echo Chamber model can be thought
of as the limit of a boundedly rational learning process as described above. This means
that the axioms we provide to characterize echo chamber representations can be used to
analyze the parameters of such an updating process even with data from only the limiting
distribution.

The result also highlights two important features that connect our model with findings
in the observational learning literature. Firstly, our model can be thought of as a special
case of the model by Friedkin and Johnsen (1990). Once all new information has arrived,
private beliefs remain constant, equivalent to the anchored initial beliefs in their model.
The weighting matrices applied to the anchored initial beliefs and previous-period beliefs
are given by Λ and (In −Λ)W . The weighting matrices in our model satisfy their condi-
tions for convergence by definition. However, we relax their stipulation of initial reported
beliefs being equal to the weighted private beliefs in our convergence result.

The second detail is that of the importance of information sequencing and the convergence
of behavioral beliefs. Reshidi (2024) shows in a model with one-time information release
for each individual and naive incorporation of private information, that the sequence in
which information is conveyed affects the limiting beliefs from a subsequent DeGroot
process. In Reshidi’s model, each individual receives a signal si in some period ti. They
then update their beliefs according to the rule

πt+1
i =

λi(H
t)si + (1− λi)(H

t)Wiπ
t t = ti − 1

Wiπ
t otherwise

where H t is the history of signals released up until period t, Wi is the i-th row of the
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DeGroot weighting matrix, and λi(H
t) is a history-dependent weight placed on new

private information. When individuals do not receive any new information, they follow
the DeGroot method of updating their beliefs. On the other hand, if they receive new
information, they take a weighted average of the signal and the DeGroot updated belief.
Reshidi shows that there do not exist any weights for which the limiting belief from this
process is sequence independent.

The intuition behind this result, and the contrast with our model, lies in how private
information is incorporated and how beliefs are updated thereafter. Particularly, Reshidi’s
model is identical to that of DeGroot once the last individual receives new information.
In the simple case of an aperiodic, strongly connected network, we know that the DeGroot
model leads to convergence of beliefs to a weighted average of initial beliefs. However,
even in the simple case of history-independent weights, the sequence of information release
before period ti − 1 determines πti−1, which determine “initial" beliefs of the subsequent
DeGroot process, if i is the last individual who receives new information.

In our setup, however, new information is incorporated into private beliefs in a Bayesian
manner, without being affected by others’ reported beliefs, which makes them sequence-
independent. Since updated reported beliefs incorporate private beliefs in every period,
the limit of reported beliefs is dependent solely on final private beliefs. Therefore, the
limiting reported beliefs are also independent of the sequencing of private information.

6 Belief Updating and Information Aggregation

6.1 Belief Updating and Transmission

We now examine how new information is assimilated and transmitted in our model.
Suppose that private information is conveyed once to individuals in the manner described
in the previous section. We examine how this information may be incorporated into
individuals’ beliefs, how these beliefs are transmitted to others in the echo chamber, and
the behavioral implications of this mechanism. We first show that beliefs are sticky, and
respond fully to nothing but consistent information across the echo chamber. We then
relate this to confirmation bias and its effects on voting outcomes.

Let S denote the set of non-empty subsets of the state space S. For each i ∈ I, define
σi : C → S such that σi(c) = {s ∈ S : ϕs

i (c) > 0, µi(s) > 0}. For all c ∈ C, we assume
that σi(c) ̸= ∅. That is, ϕs

i (c) > 0 for some s ∈ S such that µi(s) > 0.
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First, consider the case when a single individual, i, receives new information, ci. Let π′
j

denote individual j’s posterior behavioral belief upon receiving the signal. By Remark 1,
the individual’s revised belief is given by

π′
i(A) = πi(A) + αi(µi(A|ci)− µi(A)) + (1− αi)

αi(µi(A|ci)− µi(A))∑
j∈E(i) αj

As is apparent from the expression, individuals’ responsiveness to new information is
dampened by their susceptibility to influence and bolstered by their relative influence in
the echo chamber. Note also from the above expression that π′

i(A)−πi(A)

µ′
i(A|ci)−µi(A)

= αi+
αi(1−αi)∑
k∈E(i) αk

.
As such, the effect of α on an individual’s responsiveness to new information, relative to
core beliefs, can be decomposed into two components: Direct effect, αi, and Echo effect,
αi(1−αi)∑
k∈E(i) αk

. This is illustrated in Figure 1.

Figure 1. Impact of α on new information: Direct and Echo effect

Far from the Bayesian benchmark, however, not only is information not fully incorporated,
behavioral beliefs might actually be updated contrary to private information when others
in the echo chamber receive opposing information. Particularly, suppose A ∩ σi(c

i) = ∅.
A Bayesian DM would revise their belief to µi(A|ci) = 0. However, individuals in echo
chambers are unable to incorporate such information fully, and might actually revise their
beliefs upward. In fact, π′

i(A) > πi(A) for such A if

αi(1 +
∑

j∈E(i)\{i} αj)

1− αi

µi(A) <
∑

j∈E(i)\{i}

αj(µj(A|cj)− µj(A))

This particular inequality suggests that individuals especially struggle to rule out the
possibility of low probability states upon receiving information, particularly because they
seek consensus on impossible events within their echo chamber. Therefore, whenever oth-
ers receive conflicting information, low (immunity to) influence individuals are susceptible
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to ignoring their private information.

We would thus want to identify the restrictions on the information source that we must
place if individuals are to update akin to Bayesians, at least on sure (therefore, null)
events. The result that follows shows that in an echo chamber setting, even the slightest
heterogeneity in privately conveyed information leads to a conflict between an individual’s
information and the observed beliefs of other individuals in the chamber.

Proposition 4 (Sticky Beliefs). For any i ∈ I, π′
i(σi(c

i)) = 1 if and only if µj(σi(c
i) | cj) =

1, for all j ∈ E(i). Then π′
i(σi(c

i)) = 1 if and only if σi(c
i) = σj(c

j) for all j ∈ E(i).

Proof : Please refer to Appendix Section A.8

The first part of the result is derived from the property of the model, that πi(A) = 1 ⇐⇒
µj(A) = 1 for all j ∈ E(i). The second result then follows from the first.

6.2 Information Aggregation and Voting

Keeping in mind the stickiness of beliefs and the occasional negligible effect of receiving
private information, we analyze how information is aggregated in the echo chamber model.
We do so in the context of a simple model of majority voting with common interests
but differing beliefs between opposed groups of individuals. We show that influence in
beliefs increases susceptibility to confirmation bias, which is exhibited in the form of a
perseverance effect. We also show, in similar spirit to jury theorems,8 that as the society
grows arbitrarily large, the probability of the majority voting correctly converges to 1 if
the source of information is sufficiently accurate. However, while the wisdom of the crowd
prevails even with naïve updating of behavioral beliefs, it requires a greater accuracy of
private information than in the absence of influence.

Suppose the society must choose between two policy regimes, L and R. Individuals,
I = {1, ..., 2n}, are evenly divided into two chambers, EL and ER. Policy L can be
thought of as the in-group policy for EL, and likewise with policy R for ER. Each
individual votes for a policy, and one of the two policies is implemented by simple majority.
Ties are broken by a coin toss.

There are two possible states of the world, S = {ℓ, r}. If the true state of the world is ℓ

and policy L is implemented, then all individuals receive u, irrespective of the chamber to
8The canonical jury theorem is by Condorcet (1785), where votes are randomly and independently cast
with uniform probability. Extensions of the Condorcet’s theorem include contexts with correlated votes
and strategic voting: e.g. Kaniovski and Zaigraev (2011), Dietrich (2008), Peleg and Zamir (2012).
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which they belong. Likewise, if policy R is implemented and the true state is r. If L and
R are implemented with the underlying true state being r and ℓ respectively, individuals
receive the utility u. Assume u > u.

Suppose that individuals have identical core beliefs within echo chambers. That is, if
i ∈ L, µi = µL, and µi = µR otherwise. Consequently, πi = π̄E(i) = µE(i), where
E(i) ∈ {L, R}. For simplicity, assume µL(ℓ) = µR(r) = q ∈ (1

2
, 1). For simplicity,

also assume that αi = α for all i ∈ I. Individuals receive conditionally independent
signals, C = {cℓ, cr}, through a common source (C, ϕ) of accuracy ρ ∈ [1

2
, 1). That is,

ϕℓ(cℓ) = ϕr(cr) = ρ. Upon receiving a signal, individual i casts a vote in favor of L if
π′
i(L) >

1
2
, and likewise for R.9 If π′

i(ℓ) = π′
i(r), she votes for her in-group policy.

Remark 3. It is useful to establish the conditions under which individuals vote according
to the private information they receive, in the absence of any influence. Particularly,
when does the private signal observed by an individual fully determine her vote if she
votes purely based on her core beliefs? The answer to this: when the accuracy (ρ) of the
signal is greater than the strength of the prior in-group belief (q). To see this,

µL(r|cr) =
ρ(1− q)

ρ(1− q) + (1− ρ)q
>

1

2

⇐⇒ 2ρ(1− q) > ρ(1− q) + (1− ρ)q

⇐⇒ ρ(1− q) > (1− ρ)q

⇐⇒ ρ > q

This provides a Bayesian benchmark against which we can compare the results from the
Echo Chamber model.

We now analyze how voting based on behavioral beliefs is susceptible to confirmation
bias. To do so, we first make an observation about how behavioral beliefs respond to
signals received by the echo chamber. Since private information is not incorporated fully
with influence in beliefs, an individual’s vote is not only dependent on the signal she
receives, but also on the distribution of signals observed by her echo chamber. Lemma 1
shows that individuals vote for the out-group policy if and only if a certain proportion
of individuals in her echo chamber receive the out-group signal. When this threshold is
met, all such individuals vote for the out-group policy together. However, when it is not,
their in-group beliefs persevere despite evidence to the contrary.

Lemma 1. Let XL
ℓ denote the number of individuals in EL who received the signal cℓ. If

α ≤ 1
2

and ρ ̸= 1, there exists x̂(α, ρ, q) ∈ [0, 1) such that conditional on receiving the

9See that if this were modelled as a game, then voting for the policy they find is more likely to give them
higher utility is a weakly dominant strategy.
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signal cr, π′
i(ℓ) <

1
2

iff XL
ℓ

n
< x̂(α, ρ, q) for i ∈ EL.

Proof : Please refer to Appendix Section A.9

The result shows that the updated behavioral belief, π′
i(ℓ) on the in-group state is less

than half, enough to induce a switch in i’s vote, only when the proportion of individuals
who receive the signal cℓ is less than x̂, a quantity dependent on α, ρ, and q. While
the above result is written for an individual in EL, by the symmetry of the problem,
the same holds true for out-group voting in ER. The result that follows shows that
this need not hold true when individuals are relatively immune from influence. They
can sufficiently and independently incorporate private information that originates from
accurate but imperfect signals. Define ρ∗(α, q) ≡ min argmaxρ x̂(α, ρ, q) as the smallest
value of ρ that maximizes x̂(α, ρ, q) for a given α and q. The proof for Lemma 1 shows
that x̂ is continuous and increasing in ρ, which implies that ρ∗(α, q) = 1 whenever α ≤ 1

2
.

Lemma 2 shows that this does not hold when α > 1
2
.

Lemma 2. If α > 1
2
, ρ∗(α, q) ∈ (q, 1) and x̂(α, ρ∗(α, q), q) = 1.

Proof : Please refer to Appendix Section A.10

Using this insight, we can ask how likely is it that a sub-optimal policy gets implemented
when beliefs are influenced in echo chambers. Naturally, a policy is sub-optimal if it gives
individuals utility u, which, in turn, is state-contingent. With random realizations of
signals, it is clear that even when ρ > q, voting under core beliefs may result in a positive
probability of implementing the sub-optimal policy. Proposition 5 shows that unless
voting behavior (in line with the earlier lemmas) is uninfluenced by echo chambers, the
probability of implementing a sub-optimal policy is greater with influence than without.
Let γ(α, ρ, q) and γ̃(α, ρ, q) denote the probability of implementing a sub-optimal policy
under voting by behavioral and core beliefs, respectively, for a given α, ρ, and q.

Proposition 5. Suppose q < ρ < ρ∗(α, q) and n finite but large. Then, γ(α, ρ, q) >

γ̃(α, ρ, q). Furthermore, γ(α, ρ, q) → γ̃(α, ρ, q) as x̂(α, ρ, q) → 0 or x̂(α, ρ, q) → 1.

Proof : Please refer to Appendix Section A.11

The next question we are interested in is whether majority voting by behavioral beliefs
benefits from the wisdom of the crowd. If so, what are the conditions under which this
occurs? For reference, note that when ρ > q, individuals vote correctly with independent
probability ρ > q > 1

2
. Then, by the Condorcet Jury Theorem, as n → ∞, majority voting

almost surely results in the correct policy being implemented. On the other hand, if ρ ≤ q,
all individuals simply vote for their in-group policy, in which case the implementation
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of the policy is always decided by coin-toss, leading to a 1
2

probability of error. The
next proposition shows that majority voting by behavioral beliefs also exhibits similar
asymptotic characteristics, in that it is either almost surely correct or akin to a coin
toss. Nevertheless, it demands greater degree of signal accuracy to effectively aggregate
information.

Proposition 6. For each α, q, there exists ρ̃(α, q) ∈ (q, 1) such that, as n → ∞, if:

1. ρ ≤ ρ̃(α, q), then γ(α, ρ, q) → 1
2

2. ρ > ρ̃(α, q), then γ(α, ρ, q) → 0

A Appendix

The proofs for all the results in the paper are contained here. We first prove propositions
1 and 2, as they are later used in the proofs of theorems 1, 2, and 4. We then prove
theorem 3, followed by theorem 1, 4, and then theorem 2.

A.1 Proof of Proposition 1

Suppose
(
Ẽ , (α̃i)i∈I , (µ̃i)i∈I

)
is an echo chamber representation of (πi)i∈I . Note

πi(A) = α̃iµ̃i(A) + (1− α̃i)
1

|Ẽ(i)|

∑
j∈Ẽ(i)

πj(A)

By the fact that πj(A) ∈ [0, 1] and µi(A) ∈ [0, 1] for all A and j, through α̃i ∈ (0, 1),
we get πi(A) = 0 iff πj(A) = 0 for all j ∈ Ẽ(i). This applies to all i ∈ I. Then if
j ∈ Ẽ(i), then it must be that πi(A) = 0 ⇐⇒ πj(A) = 0, which means j ∈ E(i). Thus
Ẽ(i) ⊆ E(i).

For the converse, suppose Ẽ(i) ⊆ E(i) and |Ẽ(i)| ≥ 2 for all i ∈ I. Let π̃i(A) = πẼ(i)(A)

for notational simplicity. By Ẽ(i) ⊆ E(i), we have that πi(A) = 0 iff πj(A) = 0 for
all j ∈ Ẽ(i) iff π̃i(A) = 0. Then πi(A)

π̃i(A)
> 0 for all A such that this ratio is defined,

which means that 1 − min πi(A)

π̃i(A)
< 1. Now choose some αi ∈

(
1−min πi(A)

π̃i(A)
, 1
)
. Since

πi(S) = π̃i(S), we have min πi(A)

π̃i(A)
≤ 1, which means αi ∈ (0, 1).

Defining µi as:

µi(A) =
πi(A)− (1− αi)π̃i(A)

αi



22

For A such that πi(A) = 1 or πi(A) = 0, we have µi(A) = 1 and µi(A) = 0 respectively.
Further, our choice of αi is such that min πi(A)

π̃i(A)
> 1 − αi, which means πi(A) − (1 −

αi)π̃i(A) > 0 for all other A, implying that µi(A) ≥ 0 for all A ⊆ S. For A, B disjoint

µi(A ∪B) =
πi(A ∪B) + (1− αi)πi(A ∪B)

αi

=
πi(A) + πi(B)− (1− αi)(πi(A) + πi(B))

αi

=
πi(A)− (1− αi)πi(A)

αi

+
πi(B)− (1− αi)πi(B)

αi

= µi(A) + µi(B)

Thus, µi is a probability. Now that we have established that αi and µi are valid choices
for the parameters, rearranging the definition for µi(A) gives us πi(A) = αiµi(A) + (1−
αi)π̃i(A), which implies that

(
Ẽ , (αi)i∈I , (µi)i∈I

)
is an echo chamber representation of

(πi)i∈I .

A.2 Proof of Proposition 2

From the representation we have

πi(A) = αiµi(A) + (1− αi)πE(i)(A)

Rearrange this to obtain

πi(A)

πE(i)(A)
= αi

µi(A)

πE(i)(A)
+ (1− αi)

Since µi and πE(i) are probabilities, µi(A)
πE(i)(A)

≥ 0, which implies αi ≥ 1−min πi(A)
πE(i)(A)

. Since
αi ∈ (0, 1) by definition, we have the first part of the result.

For the second, choose αi in the given set for each i ∈ I. Define µi as:

µi(A) =
πi(A)− (1− αi)πE(i)(A)

αi

Note that by the choice of αi, we have that πi(A)
πE(i)(A)

≥ 1 − αi, which implies µi(A) ≥ 0

for A such that πi(A) ̸= 0. For πi(A) = 0, we have that πE(i)(A) = 0 by proposition 1,
which implies that µi(A) = 0. By the argument in proposition 1, µi is additive, and the
chosen parameters provide an echo chamber representation of (πi)i∈I .



23

A.3 Proof of Theorem 3

We first show that certainty conformism is sufficient for an echo chamber representation.

Define chambers as E(i) = N(i) ∪ {i}. Since j ∈ N(i) iff i ∈ N(j), j ∈ E(i) iff
E(i) = E(j). Then we have a valid partition of I. Certainty conformism implies that for
all i ∈ I, N(i) ̸= ∅. Thus, |E(i)| ≥ 2 for all i ∈ I. By proposition 1, there exists an echo
chamber representation under this partition.

To show necessity, note that in the absence of certainty conformism, there exists j ∈ I

such that N(j) = ∅. Then |N(j)∪{j} | = 1. However, by proposition 1, if there exists an
echo chamber representation with the partition E , then E(j) ⊆ N(j)∪{j}, which implies
|E(j)| ≤ 1. However, the definition of echo chambers requires that they are non-singleton,
which is a contradiction.

A.4 Proof of Theorem 1

We first show that the axioms are sufficient for a maximal influence echo chamber repre-
sentation.

Step 1. Defining chambers.

Define R(i) = N(i)∪ {i} for each i ∈ I. By A1, N(i) ̸= ∅, which means |R(i)| ≥ 2 for all
i ∈ I. Since j ∈ R(i) iff i ∈ R(j), setting E(i) = R(i) gives us a valid partition of I, E .
By theorem 3, there exists an echo chamber representation under this partition.

Step 2. Defining core beliefs and immunity from influence parameters.

Given any event A, we can write

πR(i)(A) =
πi(A)

|R(i)|
+

|N(i)|
|R(i)|

πN(i)(A)

πi(A) = |R(i)|πR(i)(A)− |N(i)|πN(i)(A)

πi(A) = (|N(i)|+ 1)πR(i)(A)− |N(i)|πN(i)(A)

πi(A) = πR(i)(A) + |N(i)|(πR(i)(A)− πN(i)(A))

By A2, we know that there exists some event A such that πR(i)(A) ̸= πN(i)(A), and
since N(i) ̸= ∅, πi(A) ̸= πR(i)(A). Then either πi(A) < πR(i)(A) or πi(A

c) < πR(i)(A).
Consequently, min πi(A)

πR(i)(A)
< 1. Choose αi = 1 −min πi(A)

πR(i)(A)
> 1 − 1 = 0. Furthermore,

πi(A) = 0 iff πj(A) = 0 for all j ∈ R(i) iff πR(i)(A) = 0, which implies πi(A)
πR(i)(A)

> 0 for
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all A such that this ratio is defined. Then αi < 1, and αi ∈
[
1−min πi(A)

πR(i)(A)
, 1
)
∩ (0, 1).

By proposition 2, there exists an echo chamber representation with the partition E and
immunity from influence parameters (αi)i∈I . Rearrange the definition of behavioral beliefs
in the model to get µi as

µi(A) =
πi(A)− (1− αi)πR(i)(A)

αi

Then
(
E , (αi)i∈I , (µi)i∈I

)
is an echo chamber representation of (πi)i∈I .

Step 3. Establishing that this representation is maximal influence.

By proposition 1, we know that if there exists an echo chamber representation of (πi)i∈I
under any partition Ẽ , then Ẽ(i) ⊆ R(i) = E(i). Thus there does not exist any rep-
resentation with a coarsening of E . If Ẽ(i) = R(i) for all i ∈ I, note by proposition 2
that the corresponding immunity from influence parameter α̃i ≥ 1 − min πi(A)

πR(i)(A)
= αi.

Then, to show that
(
E , (αi)i∈I , (µi)i∈I

)
, we must ensure that if there exists another echo

chamber representation
(
Ẽ , (α̃i)i∈I , (µ̃i)i∈I

)
, such that Ẽ = E and α̃i = αi for all i ∈ I,

then µ̃i = µi for all i ∈ I.

By the definition of the model, for all A ⊆ S:

µ̃i(A) =
πi(A)− (1− α̃i)πR(i)(A)

α̃i

=
πi(A)− (1− αi)πR(i)(A)

αi

= µi(A)

Thus µi = µ̃i for each i ∈ I. Then
(
Ẽ , (α̃i)i∈I , (µ̃i)i∈I

)
is identical to

(
E , (αi)i∈I , (µi)i∈I

)
,

which means it cannot be non-maximal. Consequently, it is a maximal influence echo
chamber representation of (πi)i∈I .

This completes the proof for sufficiency of the axioms.

We now look at the necessity of the two axioms.

Axiom A1: By theorem 3, certainty conformism is necessary for the existence of an echo
chamber representation, of which the maximal influence echo chamber representations are
a subclass.

Axiom A2: Suppose there exists i ∈ I such that πR(i)(A) = πN(i)(A) for all A ⊆ S.
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Then note

πi(A) = πR(i)(A) + |N(i)|
(
πR(i)(A)− πN(i)(A)

)
= πR(i)(A)

Then πi = πR(i). If A1 is violated, there does not exist any echo chamber representation
of (πj)j∈I , so assume it is satisfied. Let

(
E , (αi)j∈I , (µi)j∈I

)
be a maximal influence echo

chamber representation of (πj)j∈I . By proposition 1, we know that E(i) = R(i). By
definition, αi ∈ (0, 1). Then there exists α̃i ∈ (0, 1) such that α̃i < αi. Set µi = πi. Note
that by µ̃i = πi = πR(i), the parameters α̃i and µ̃i imply πi(A) = α̃iµ̃i(A)+(1−α̃i)πR(i)(A)

for all A ⊆ S.

Leaving the parameters associated with all others unchanged, note that πj(A) = αjµj(A)+

(1 − αj)πR(j)(A) by supposition. Then (E , (α̃i, α−i) , (µ̃i, µ−i)) is an echo chamber rep-
resentation of (πj)j∈I . However, as α̃i < αi,

(
E , (αi)j∈I , (µi)j∈I

)
cannot be maximal

influence, leading to a contradiction.

A.5 Proof of Theorem 4

Step 1. Show uniqueness of partition.

By theorem 1, if there exists a maximal influence echo chamber representation of (πi)i∈I ,
then N(i) ̸= ∅, which implies that |R(i)| = |N(i)∪{i} | ≥ 2. Since E , where E(i) = R(i),
is a partition of I, by proposition 1, there exists an echo chamber representation of (πi)i∈I
with the partition E , and further, there does not exist Ẽ , a coarsening of E , such that
there exists an echo chamber representation of (πi)i∈I under Ẽ .

Step 2. Show uniqueness of immunity from influence parameters.

Again, by the arguments in theorem 1, A2 implies that min πi(A)
πR(i)(A)

< 1, which means that

1 −min πi(A)
πR(i)(A)

> 0 for all i ∈ I. Then, by proposition 2, there exists an echo chamber

representation such that αi = 1−min πi(A)
πR(i)(A)

. Again, by proposition 2, if there exists some
other representation with partition E and immunity from influence parameters (α̃i)i∈I ,
α̃i ≥ 1−min πi(A)

πR(i)(A)
= αi. Thus, for any maximal influence echo chamber representation,

αi = 1−min πi(A)
πR(i)(A)

, which is unique.

Step 3. Show uniqueness of core beliefs.

In the proof of theorem 1, we have shown that if there exist two representations
(
E , (αi)i∈I , (µi)i∈I

)
and

(
Ẽ , (α̃i)i∈I , (µ̃i)i∈I

)
such that Ẽ = E and α̃i = αi for each i ∈ I, then µ̃i = µi as well.
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Since we have established that for any maximal influence echo chamber representation,
the partition must be given by E with E(i) = R(i) and αi = 1 − min πi(A)

πR(i)(A)
for each

i ∈ I, it must be that µi is also uniquely determined. Thus, we have shown that the
maximal influence echo chamber representation for any (πi)i∈I is unique.

A.6 Proof of Theorem 2

First, we prove that an MIEC representation satisfies DFC-Inter and DFC-Intra. Let(
E , (αi)i∈I , (µi)i∈I

)
be an MIEC representation of (πi)i∈I . As established in the proof of

theorem 4, under this representation E(i) = N(i)∪{i} and αi = 1−min πi(A)
πE(i)(A)

for each
i ∈ I. From remark 1

πE(i)(A) =
∑

j∈E(i)

αjµj(A)∑
k∈E(i) αk

Then for any A ⊆ S, πj(A) = 1 for all j ∈ E(i) iff πE(i)(A) = 1 iff µj(A) = 1 for all
j ∈ E(i). Then take any two chambers E and E ′. If i ∈ E and j ∈ E ′, note that j /∈ N(i),
which means there exists A such that πi(A) = 1 but πj(A) ̸= 1, or vice versa. Suppose
w.l.o.g. that A0 is such that πi(A

0) = 1 but πj(A
0) < 1. Then µi′(A

0) = 1 for all i′ ∈ E,
which means E is fundamentally certain about A0. However, πj(A

0) < 1, which implies
E ′ is not fundamentally certain about A0. Since this is true for all E, E ′, DFC-Inter is
satisfied.

Now by αi = 1 − min πi(A)
πE(i)(A)

, suppose A0 ∈ argmin πi(A)
πE(i)(A)

. Then note that πi(A
0)

πE(i)(A
0)

=

1−αi = αi
µi(A

0)
πE(i)(A

0)
+1−αi. This implies µi(A

0) = 0. However, πE(i)(A
0) > 0 as πi(A

0)
πE(i)(A

0)

is defined, which implies that there exists j ∈ E(i) such that µj(A
0) > 0. Then i is

fundamentally certain about (A0)c but j is not. Since we can find such an A0 for each
i ∈ I, DFC-Intra is also be satisfied.

Now we show that if
(
E , (αi)i∈I , (µi)i∈I

)
is a representation that satisfies DFC-Inter and

DFC-Intra, it must be an MIEC representation.

By DFC-Inter, for any E, E ′, there exists an event A such that one chamber is funda-
mentally certain about it but the other is not. Suppose E is fundamentally certain about
A and E ′ is not. By the earlier arguments, πi(A) = 1 for all i ∈ E and πj(A) < 1 for
all j ∈ E ′. By proposition 1, E(i) ⊆ N(i) ∪ {i} for all i. On the other hand, if i ∈ E

and j ∈ E ′, since πi(A) = 1 and πj(A) < 1, j /∈ N(i). Since this is true for all E, E ′,
N(i) ∪ {i} ⊆ E(i). Thus, E(i) = N(i) ∪ {i}, which means that there does not exist a
coarsening of E under which partition there exists an EC representation of (πi)i∈I .

Then by DFC-Intra, there exists B for each i ∈ I such that µi(B) = 1 but µj(B) < 1
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for some j ∈ E(i). Then µi(B
c) = 0 and µj(B

c) > 0, which means πE(i)(B
c) > 0. Then

note that πi(B
c)

πE(i)(B
c)

= 1 − αi, which implies αi = 1 − πi(B
c)

πE(i)(B
c)

. Since πi(A)
πE(i)(A)

≥ 1 − αi

as µi(A) ≥ 0, πi(B
c)

πE(i)(B
c)

= min πi(A)
πE(i)(A)

. By proposition 2, for any other representation(
E , (α̃i)i∈I , (µ̃i)i∈I

)
, α̃i ≥ αi, which means that

(
E , (αi)i∈I , (µi)i∈I

)
is an MIEC repre-

sentation.

A.7 Proof of Proposition 3

Consider the problem of a single component. Since all individuals, i ∈ E, receive private
information only up to some finite period, µt

E ≡ µE, for all t ≥ max {Ti|i ∈ E}, with
µt
i = µTi

i . Then
πt+1
E = ΛEµE + |E|−1(I|E| − ΛE)1|E|π

t
E

Define B as
BE ≡ |E|−1(I|E| − ΛE)1|E|

and write

πt+1
E = ΛEµE +BEπ

t
E

= (I|E| +BE +B2
E + ...+Bt

E)ΛEµE +Bt+1
E π0

E

It can easily be verified that ||BE|| ≤ maxi∈E(1− αi), which implies that

lim
t→∞

πt
E =

(
∞∑
k=0

Bk
E

)
ΛEµE + lim

t→∞
Bt+1

E π0
E

Since ||BE|| < 1, limt→∞Bt+1
E = 0, and

lim
t→∞

πt
E = (I|E| −BE)

−1ΛEµE

= (I|E| − |E|−1(I|E| − ΛE)1|E|)
−1ΛEµE
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irrespective of the initial condition on reported beliefs. Now we must simply show that
limt→∞ πt

E is a fixed point of this process. Let π∗
E = limt→∞ πt

E. Note that

ΛEµE +BEπ
∗
E = ΛEµE +BE(I|E| −BE)

−1ΛEµE

= (I|E| +BE(IE −BE)
−1)ΛEµE

=

(
IE +BE

∞∑
k=0

Bk
E

)
ΛEµE

=

(
∞∑
k=0

Bk
E

)
ΛEµE

= (I|E| −BE)
−1ΛEµE

= π∗
E

Then, for each i ∈ E and A ⊆ S,

π∗
i (A) = λiµi(A) + (1− λi)

1

|E|
∑
j∈E

π∗
j (A)

Since this is true for any arbitrary component, the argument goes through for all com-
ponents in E . However, Remark 1 established that (πi)i∈I , the behavioral beliefs corre-
sponding to the parameters E , (µi)i∈I , and (αi)i∈I with αi = λi is the unique solution to
the above equation, implying that π∗

i = πi for all i ∈ I.

A.8 Proof of Proposition 4

Proposition 4 can be proved as follows.

πi(σi(c
i) | ci) = 1 ⇐⇒ πi(σi(c

i) | (c1, ..., ck)) = 1

⇐⇒ µj(σi(c
i) | cj) = 1 ∀ j ∈ E(i)

Take some state s such that s ∈ σi(c
i). Then µi(s | ci) > 0. This means, however, that

πj(s | cj) > 0 for all j ∈ E(i). Then, if πj(σj(c
j) | cj) = 1 for all j ∈ E(i), it must be that

s ∈ σj(c
j). This implies that σi(c

i) ⊆ σj(c
j) for all j ∈ E(i). By a symmetric argument,

σj(c
j) ⊆ σi(c

i), and we can extend this to any i, j ∈ Ek some echo chamber.

Let us now assume that σj(c
j) = σi(c

i) for all i, j ∈ Ek. Then µi(σi(c
i)|ci) = µi(σ

j(cj)|ci) =
1 for all i, j ∈ Ek. Then for all i ∈ Ek, µj(σi(c

i)|cj) = 1 for all j ∈ Ek. Thus, π′
i(σi(c

i)) = 1

for all i ∈ Ek. This completes the proof.
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A.9 Proof of Lemma 1

Note that if i ∈ L, then upon receiving the signal cr, the updated behavioral belief of i
is given by

π′
i(ℓ) = αµL(ℓ|cr) + (1− α)

[
XL

ℓ

n
µL(ℓ|cℓ) +

n−XL
ℓ

n
µL(ℓ|cr)

]
=

(1− ρ)q

(1− ρ)q + ρ(1− q)
+ (1− α)

XL
ℓ

n

[
ρq

ρq + (1− ρ)(1− q)
− (1− ρ)q

(1− ρ)q + ρ(1− q)

]
where XL

ℓ is the random variable that specifies the number of individuals in EL who have
received the signal cℓ. Then π′

i(ℓ) <
1
2

iff

1

2
>

(1− ρ)q

(1− ρ)q + ρ(1− q)
+ (1− α)

XL
ℓ

n

[
ρq

ρq + (1− ρ)(1− q)
− (1− ρ)q

(1− ρ)q + ρ(1− q)

]
⇐⇒ XL

ℓ

n
<

1

1− α

1
2
− (1−ρ)q

(1−ρ)q+ρ(1−q)

ρq
ρq+(1−ρ)(1−q)

− (1−ρ)q
(1−ρ)q+ρ(1−q)︸ ︷︷ ︸

≡x∗

α ≤ 1
2

implies (1− α)−1 ≤ 2. Note that x∗ is increasing in ρ. If ρ > q, by Remark 3, x∗

is positive and bounded by half, which implies (1− α)−1x∗ ≤ 1. Since ρ ̸= 1, x∗ < 1
2
, so

x̂(α, ρ, q) = (1− α)−1x∗ < 1.

If ρ ≤ q, note that µL(ℓ|c) ≥ 1
2

irrespective of whether c = cℓ or c = cr. Then for all
realizations of signals, π′

i(ℓ) ≥ 1
2
. Let x̂(α, ρ, q) = 0. Note that XL

ℓ

n
≥ 0 for all realizations

of signals. Then π′
i(ℓ) <

1
2

⇐⇒ XL
ℓ

n
≤ x̂(α, ρ, q) vacuously.

A.10 Proof of Lemma 2

Note from the proof of Lemma 1 that x∗ ∈ [0, 1
2
] and x∗ is continuous in ρ. Since x∗ = 0

when ρ = q and x∗ = 1
2

when ρ = 1, and 0 < 1− α < 1
2
, by intermediate value theorem,

there exists ρ∗ ∈ (q, 1) such that x∗ = 1− α when ρ = ρ∗.

A.11 Proof of Proposition 5

Since we assume that q < ρ < ρ∗(α, q), x̂(α, ρ, q) < 1. Assume n large enough such that
n−1
n

> x̂(α, ρ, q).

Since the problem is symmetric, suppose the true state is ℓ. We want to analyze all situa-
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tions where voting based on core and behavioral beliefs result in different policies being im-
plemented. Policy R is implemented under behavioral beliefs if either (i) XR

r

n
≥ x̂(α, ρ, q)

and XL
ℓ

n
< x̂(α, ρ, q) or (ii) XL

ℓ

n
< XR

r

n
< x̂(α, ρ, q). A symmetric construction works

for when policy L is implemented. In both cases, note that if a policy is implemented
under behavioral beliefs, then it must be implemented under core beliefs as well. The
only remaining case is when a certain policy may be implemented when voting by core
beliefs, but voting under behavioral beliefs is deadlocked, meaning either policy may be
voted in with probability 1

2
.

We only need to establish, then, that for all situations such that voting under behavioral
beliefs is deadlocked, it is more likely that voting based on core beliefs elects the optimal
policy. To see this, note that policy R is implemented under core beliefs iff XR

r > XL
ℓ .

Voting under behavioral beliefs is deadlocked under such a scenario iff XR
r > XL

ℓ ≥
nx̂(α, ρ, q). Similarly, for policy L, with XL

ℓ > XR
r .

Since ρ ≥ 1
2
, if a > b, ρa+(n−b)(1−ρ)b+(n−a) > ρb+(n−a)(1−ρ)a+(n−b). If XL

ℓ = a and XR
r = b

and a > b ≥ nx̂(α, ρ, q), then policy L is implemented under voting by core beliefs with a
deadlock arising from voting under behavioral beliefs. However, for XR

r = a and XL
ℓ = b,

policy R is implemented under voting by core beliefs, without changing the outcomes
under behavioral beliefs. However, note that P(XR

r = a, XL
ℓ = b) < P(XL

ℓ = a, XR
r = b),

which means that the probability of voting for policy R by core beliefs is less than half.
On the other hand, policy R is voted in half of the time under behavioral beliefs. Thus,
we have shown γ(α, ρ, q) > γ̃(α, ρ, q).

Now, when x̂(α, ρ, q) → 1, note that for any n, n−1
n

< x̂(α, ρ, q) after a threshold.
Thus, voting outcomes under core and behavioral beliefs are identical. If x̂(α, ρ, q) → 0,
then ρ → q, in which case voting outcomes converge to being deadlocked almost surely,
whether under core or behavioral beliefs.

A.12 Proof of Proposition 6

By the conclusions of Lemmas 1 and 2, there exists x̂(α, ρ, q) ∈ [0, 1] such that π′
i(ℓ) <

1
2

for i ∈ L conditional on receiving the signal cr iff XL
ℓ

n
< x̂(α, ρ, q). We also noted that

for ρ ∈ (q, ρ∗(α, q)), x̂(α, ρ, q) is continuous and strictly increasing in ρ.

Note, now, that by the strong law of large numbers, XL
ℓ

n
→ 1−ρ almost surely as n → ∞.

This implies that π′
i(ℓ) <

1
2

almost surely as n → ∞ iff 1−ρ < x̂(α, ρ, q). Suppose q < 1.
Since infα x̂(α, 1, q) =

1
2
> 1− ρ ≡ 0, and x̂(α, q, q) = 0 < 1− q ≡ 1− ρ, there exists a

root of x̂(α, ρ, q) + ρ− 1 for ρ ∈ (q, 1). That value of ρ becomes ρ̃(α, q). On the other
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hand, if q = 1, then π′
i(ℓ) is never less than 1

2
, which means that ρ̃(α, q) = 1.
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