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Abstract

We introduce an equilibrium-based model of peer effects in a cluster network of

boundedly rational agents. The mechanism underlying peer effects draws on the idea

of socially influenced random attention, specifically, the more popular is an alterna-

tive amongst an individual’s peers, the more likely it is to receive their attention and,

consequently, greater their probability of choosing it. We introduce the concept of an

attention through peers equilibrium to model this choice-attention interaction among

peers. We show that such an equilibrium uniquely exists and is supported as the

outcome of observational learning. The model permits an exact identification of the

cluster network, along with individual preferences and their susceptibilities to influ-

ence, which together underlie peer effects. We characterize the model behaviorally,

enabling a transparent check for whether empirically observed evidence of peer effects

is consistent with our mechanism or not. We show the existence of a social multiplier

and highlight a novel preference-attention interaction that drives nonlinearities in the

measurement of peer effects and implies a crowding out effect, whereby more preferred

alternatives crowd out peer effects of less preferred ones.
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1 Introduction

Analyzing the influence of one’s peers on behavior has been an enduring concern of eco-

nomic analysis. When such peer effects exist, a key question of interest is about the

mechanism through which such effects work. It has been noted in the literature that iden-

tifying mechanisms that drive peer effects is among the more challenging open questions

in this line of research and, further, that the analysis of new theoretical models of peer

interactions and their subsequent estimation may hold the key to addressing this ques-

tion (Boucher and Fortin, 2016; Bramoullé, Djebbari, and Fortin, 2020). Motivated by

this perspective, this paper studies a natural mechanism that generates peer effects. Our

mechanism draws on the notion of socially influenced random attention, specifically, the

idea that a decision maker’s attention or consideration is more likely to be drawn towards

alternatives that are popular among her peers, in turn making these alternatives more

likely to be chosen.1 Hence, peer effects according to this perspective is generated by the

mutual interactions between peers’ attention and choices. We study these peer effects in

the context of a cluster network, i.e., a social network in which the set of individuals are

partitioned into clusters, and all individuals within a cluster are connected.2

We explore this mechanism with several goals in mind. First, we establish the theoret-

ical coherence of the mechanism by (a) proposing an equilibrium notion that pins down

what mutual consistency of these peer interactions imply, and (b) establishing that this

equilibrium notion is non-vacuous and always exists uniquely. This exercise mirrors for

our boundedly rational environment the analysis that has been done in the literature to

provide micro-foundation for popular peer effects models like the linear-in-means (LIM)

model by modeling it as the (Bayes) Nash equilibrium outcome of a network game among

1The observation that, in any given choice problem, a boundedly rational decision maker’s attention

may be limited to only a subset of the available alternatives is a well-documented behavioral phenomenon

in the literature, e.g., Masatlioglu, Nakajima, and Ozbay (2012), Eliaz and Spiegler (2011), Manzini and

Mariotti (2014), Brady and Rehbeck (2016), Lleras et al. (2017), Caplin, Dean, and Leahy (2018), and

Dardanoni et al. (2020), among others. More recently, a strand of the literature has explored the possibility

that social influence may play a role in determining a decision maker’s attention in the sense that she may

only consider alternatives that her peers choose or they recommend, e.g., Borah and Kops (2018) and

Kashaev, Lazzati, and Xiao (2023).
2Cluster networks have been the predominant social structure within which peer effects have been

studied. Apart from the fact that such clusterings naturally form in society, one reason for this focus is

that unlike diffusion where indirect connections formed between neighbors of neighbors may be adequate

for propagation, the effects of influence are most prominent in direct connections: “Having a close friend

engage in some behavior is likely to have more of an effect on someone than if a friend of a friend engages in

that same behavior” (McAdam, 1986). Empirical evidence of peer effects in the context of a cluster network

has been reported in several areas, e.g., voting behavior (Cohen, 2003; Barber and Pope, 2019; Macy et al.,

2019; Miller and Conover, 2015), formative behavior like smoking, prosocial attitudes, aggressive behavior

(Ehlert et al., 2020; Ellis and Zarbatany, 2017; Lodder et al., 2016), body image concerns and dieting

behavior (Paxton et al., 1999), and academic performance (Zimmerman, 2003). From an econometric

perspective, cluster networks are noteworthy as they raise challenges of identification (Manski, 1993).
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rational players; or discrete choice models of influence within a random utility framework.3

Second, we draw on decision-theoretic tools to address the problem of identification, which

is a key challenge in this line of work. Specifically, we exploit the stochasticity in behavior

produced by random attention to uniquely identify the cluster network underlying influ-

ence, along with individual characteristics like preferences and idiosyncratic susceptibility

to influence that underlie peer effects. Third, we behaviorally characterize the model

and provide grounds for its falsification, thus enabling a transparent check for whether

choice data suggestive of peer influence conforms with our mechanism or not. Finally,

we show the implication of our model for the measurement of peer effects, and compare

and contrast them with those under the LIM and discrete choice based models. In this

regard, we develop a novel equilibrium-based perspective on why the measurement of peer

effects may involve nonlinearities that draws on an interaction between preferences and

socially influenced attention and involves more preferred alternatives crowding out peer

effects associated with less preferred ones. Additionally, we show the existence of a social

multiplier.4

We draw on the random consideration set model of Manzini and Mariotti (2014) to capture

the mutual interactions between peers’ attention and choices.5 In their choice-theoretic

model, an individual decision maker has preferences over a given set of alternatives. How-

ever, her choice behavior is intermediated by the probabilities with which alternatives

receive attention, which are exogenously specified. Given these attention probabilities, the

decision maker’s probability of choosing an alternative in a menu is given by the conjoint

probability of the event that this alternative receives attention, but alternatives strictly

preferred to it do not. The agents in our model use the same choice rule but within an equi-

librium setting with the attention probabilities endogenously determined based on their

peers’ choices. Specifically, under the attention through peers (ATP) equilibrium solution

concept we introduce, an individual’s susceptibility to peer influence translates to them

being more likely to pay attention to alternatives perceived as popular and more frequently

chosen by their peers. An ATP equilibrium pins down the inter-connected choice behavior

of these agents who mutually influence each other within their respective clusters with

agents’ choice probabilities dependent on attention probabilities, which in turn are depen-

dent on these same choice probabilities. We establish that these interactions are mutually

consistent and determinate by showing that an ATP equilibrium uniquely exists.

Our equilibrium analysis of peer influence and behavior connects our paper to an important

body of work in the literature that has sought to study peer effects through equilibrium-

based models. Prominent among these are attempts to provide micro-foundations for the

3See, for example, Blume et al. (2015), Boucher et al. (2024), and Brock and Durlauf (2001).
4A social multiplier is present when a common shock to fundamentals produces not just a direct effect

on individual outcomes but also an indirect effect through social interactions, with the multiplier defined

as the ratio of total direct and indirect effect to the direct effect.
5A similar random consideration set model also appears in Manski (1977).
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linear-in-means (LIM) model of peer effects through game-theoretic models on networks

in which the best response function of each agent is linear in the mean outcome/action of

her peers. It is well known that this can be done through either a model of conformist

social norm or one involving spillovers (Blume et al., 2015). Recently, Boucher et al. (2024)

have generalized this by providing micro-foundations for non-linear aggregation over peers’

outcomes, which includes as special cases the LIM model and “max” (resp., “min”) model

under which an agent is only influenced by the peer with the maximal (resp., minimal)

outcome. When it comes to non-linearities in peer effects, Brock and Durlauf (2001) in an

influential work that studies self-consistent equilibria in a binary choice model. In their set-

up, individuals receive idiosyncratic random utility shocks that are logistically distributed

and hold rational expectations about the distribution of their peers’ actions.6 Where our

model diverges from this body of work is in its equilibrium analysis of peer effect in the

context of boundedly rational agents with socially-influenced limited attention, whereas the

literature cited above considers rational Bayesian agents. To the extent that the Bayesian

benchmark may be particularly demanding in the context of network interactions, we see

merit in pursuing such equilibrium based, boundedly rational approaches to studying peer

effects. To further impress this point, we show that an ATP equilibrium can be supported

as the outcome of a boundedly rational observational learning process.

Our study of peer effects in the context of a cluster network connects our work with the

seminal contribution of Manski (1993) and the productive literature it has spurred around

the question of identifying peer effect. In his paper, Manski discusses the reflection prob-

lem, highlighting the challenges in identifying endogenous peer effects when such peers are

embedded within clusters. The interactive nature of decision making makes it challenging

to discern whether the similarity in behavior among peers is due to the influence of peers’

outcomes (endogenous peer effects), peers’ characteristics (contextual effects), or due to

shared external factors (correlated effects). Indeed, Manski (1993) establishes that even

under the assumption that the cluster network is known to the econometrician, identifying

endogenous peer effects may not be possible. To disentangle these effects, the literature

has had to move away from cluster networks and consider peers embedded within a gen-

eral network structure (Bramoullé, Djebbari, and Fortin, 2009; De Giorgi, Pellizzari, and

Redaelli, 2010; Lin, 2010). In such networks, identification is possible by exploiting a novel

identification strategy involving non-transitivity of peers under which peers of peers are

not peers. This is, however, only one of the challenges that Manski laid out in his paper.

More generally, Manski was concerned about the problem of identification of the social

network itself, as this may not be observable to the econometrician.7 Our work here shows

how observed behavior can be used to address the identification challenges laid out by

6Other contributions that have built on this paper are Lee, Li, and Lin (2014) and Ioannides (2006).
7Manski (1993) writes (pg. 536): “ Researchers studying social effects rarely offer empirical evidence to

support their reference-group specifications. . . . If researchers do not know how individuals form reference

groups and perceive reference-group outcomes, then it is reasonable to ask whether observed behavior can

be used to infer these unknowns.”
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Manski. Not only do we fully identify the cluster network underlying peer effects, but we

are also able to exactly identify individual preferences and the extent of their susceptibil-

ity to influence, which in our model underlie endogenous peer effects, thus permitting the

exact identification of these effects.

At the same time, we also establish that our model is falsifiable based on choice data. That

is, for any such dataset of interdependent choice behavior suggestive of peer effects, we are

able to transparently determine whether it can be rationalized by the ATP mechanism or

not. This behavioral characterization of the model based on three straightforward condi-

tions holds value precisely because different micro-founded models of peer effects, based on

very different mechanisms may imply identical reduced form specifications. Therefore, if

our goal is to tie evidence of peer effects to precise mechanisms, we need to be able to infer

about mechanisms from observed data. In the way of an example to illustrate this point,

note that both a micro-founded model of conformist social norms and one of spillover or

complementarities imply a linear in means specification of peer effects. However, the im-

plications of these two models are very different, e.g., whereas the latter implies a social

multiplier, the former doesn’t (Boucher and Fortin, 2016). This, therefore, illustrates the

importance of tying data to mechanisms and not simply to the existence of peer effects,

and a behavioral characterization exercise allows us to do so.

Our approach to identification and characterization draws inspiration from the decision

theory literature by exploiting inter-menu variations in behavior. In so doing, we join a

recent behavioral choice theory based literature that has studied peer effects and interde-

pendent behavior within social networks.8 Our results also highlight how decision-theoretic

tools can complement econometric approaches in solving challenging questions involving

identification of networks and peer effects within them. An emerging literature in econo-

metrics has been actively involved in measuring peer effects when the underlying network

of peers is unknown to the researcher.9 This, for instance, could be the case if either

data on social ties are not available, or the collected data on such links based on common

observables may not be the true links driving peer effects. In this context, our work shows

how choice data and standard decision-theoretic tools may be powerful allies in aiding

identification of missing network links in the data.

The final set of questions we look at in this paper is regarding the measurement of peer

effects and the existence of a social multiplier. The two prominent frameworks through

which peer effects have been empirically studied are the LIMmodel (Sacerdote, 2001; Duflo,

Dupas, and Kremer, 2011; Casaburi and Reed, 2022) and discrete choice models (Brock and

Durlauf, 2007; Lee, Li, and Lin, 2014; Volpe, 2025). Our analysis connects with both. Like

8See, for example, Chambers, Cuhadaroglu, and Masatlioglu (2023), Kashaev, Lazzati, and Xiao (2023),

Borah and Kops (2018) and Cuhadaroglu (2017).
9See, for example, De Paula, Rasul, and Souza (2024), Lewbel, Qu, and Tang (2023) and Battaglini,

Patacchini, and Rainone (2022)
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with discrete choice models of peer effects, our framework implies a non-linear relationship

between an individual’s probability of choosing an alternative and that of her peers and,

from an econometric perspective, a maximum likelihood estimation strategy allows for a

consistent estimation of model parameters. We show that at the heart of this non-linearity

is an interaction between individual preferences and attention, which results in a crowding

out effect with more preferred alternatives crowding out the peer effects associated with less

preferred ones. The structure of this non-linearity is such that when the model is written

out in terms of expectations, it implies a quasi-linear relationship between an individual’s

expected outcome and that of her peers, with the crowding out effect determining the

exact nature of the quasi-linearity. This also explains why the popular LIM model would

produce biased estimates of peer effects in this environment. Although an individual’s

expected outcome is indeed linear in the mean expected outcome of her peers as the LIM

model would predict, ignoring the non-linear crowding out effect makes LIM estimates

both biased and inconsistent. Our work therefore relates to an emerging strand in the

literature that has made the point that there may be significant nonlinearities involved in

measuring peer effects and, accordingly, the LIM model may produce biased estimates of

such effects (Boucher et al., 2024). Finally, given that influence in the ATP mechanism

exhibits a spillover effect, we show that our model implies a social multiplier.

The rest of the paper is organized as follows. The next section lays out the setup of

the model and defines the equilibrium notion. Section 3 shows that such an equilibrium

uniquely exists and is stable. Section 4 provides our identification result, establishing

that the parameters of the model are uniquely identified. Section 5 provides a behavioral

characterization of the equilibrium choice data. Section 6 comments on the social multiplier

and measurement of peer effects in our model and how data generated by our model squares

up with common estimation techniques for peer effects. It also relate the measurement of

peer effects under our model to those under the LIM and discrete choice models. Proofs

of results appear in the Appendix.

2 A model of attention through peers

Let I = {1, . . . , n} be a set of individuals in society, with typical agents denoted by i, j,

etc. These individuals populate a cluster network, i.e., the underlying undirected graph

of connections is a disjoint union of complete graphs. Such a network can be conveniently

specified in terms of a partition N =
{
N1, ..., NS

}
of I, with each element of the partition

referred to as a cluster and the partition as a clustering. Individuals within a cluster are

peers who are all connected and influence each other. Individuals across clusters do not.

Let N(i) denote the cluster to which i ∈ I belongs. Note that j ∈ N(i) iff i ∈ N(j). To

keep interactions in the model interesting, we assume all clusters are non-singleton.

Let X denote a finite set of alternatives, with typical elements denoted by a, b, etc.
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Each i ∈ I has preferences over the alternatives in X, captured by a strict preference

ranking ≻i ⊆ X ×X.10 We assume that the clustering exhibits some degree of preference

homophily. Specifically, between any two clusters, there exist some alternatives over which

the preferences of every member of one cluster agree, but this agreement is not shared by

the other cluster.

Condition 2.1 (Homophily). For all pairs of clusters N s, N t, there exist alternatives

a, b ∈ X such that all individuals in one of the clusters prefer a to b but not in the other.

Clusterings that satisfy this property (w.r.t. the given preferences) will be referred to as

homophilous clusterings. Further, influence is meaningful only in the presence of some

disagreement. Therefore, we assume that individuals in a cluster do not all have identical

preferences.

With these details in place, we can present the attention channel through which peer

influence works in our model. As discussed in the Introduction, this channel captures

the idea that the more popular a choice is in an individual’s cluster, the more likely it

is to receive her attention. Formally, we model this in the following way. In any menu

of alternatives A ⊆ X,A ̸= ∅, we measure the popularity of any alternative a ∈ A in

individual i’s cluster by the average probability with which it is chosen in her cluster,
1

|N(i)|
∑

j∈N(i)

pj(a,A), where pj(a,A) is the probability of i’s peer j choosing a ∈ A.11 Higher

its popularity, greater the attention it receives. At the same time, not all individuals are

susceptible to influence to the same extent. Let βi ∈ (0, 1) be the probability of individual

i’s attention being immune from influence so that 1 − βi captures the probability of her

being susceptible to influence. Accordingly, with probability βi, the alternative receives full

attention, and with complementary probability 1−βi, the likelihood of receiving attention

is equal to the average probability of this alternative being chosen in her cluster. This,

therefore, implies that the probability that i pays attention to the alternative a in menu

A is given by:

γi(a,A) := βi + (1− βi)

∑
j∈N(i)

pj(a,A)

|N(i)|

The probability with which any alternative receives an individual’s attention depends on

the average probability of this alternative being chosen in her cluster. At the same time,

choice probabilities themselves depend on attention probabilities. In other words, choice

probabilities both determine attention probabilities and, in turn, are determined by them

in an environment of mutual influence and interactions within clusters. Our equilibrium

notion captures the steady state of these interactions, identifying for any given menu A,

the profile ((pi(a,A))a∈A)i∈I of choice probabilities that are mutually consistent, given

10By a strict preference ranking, we mean a total, asymmetric and transitive binary relation.
11|N(i)| denotes the cardinality of N(i). The choice probabilities pj(a,A), j ∈ N(i), are, of course,

endogenous.
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the choice-attention interaction among peers. Note, given that attention is random, it

is possible that in equilibrium there is a positive probability of an individual not paying

attention to any of the available alternatives and not choosing any of them. That is, in

equilibrium,
∑

a∈A pi(a,A) ≤ 1, with the inequality possibly holding strictly, which if it

does, means that 1−
∑

a∈A pi(a,A) is the probability of i not choosing any of the available

alternatives.12

Definition 2.1. Given a menu A, the collection of choice probabilities {(pi(a,A))a∈A :∑
a∈A pi(a,A) ≤ 1, i ∈ I} is an attention through peers (ATP) equilibrium if for all i ∈ I,

pi(a,A) = γi(a,A)
∏

b∈A:b≻ia

(
1− γi(b, A)

)
(1)

and

γi(a,A) = βi + (1− βi)

∑
j∈N(i)

pj(a,A)

|N(i)|
(2)

An ATP equilibrium can be thought of as a steady state of the process of mutual influence

that takes place within clusters. Equation 1 specifies the random consideration set rule

of Manzini and Mariotti (2014), which captures individuals’ probabilistic choice behavior.

Under it, the probability of choosing an alternative in a menu is the probability of the event

that it receives attention but alternatives preferred to it do not. That is, i’s best alternative

in A, say a1, is chosen with probability γi(a1, A), while the second best alternative, say

a2, is chosen with probability γi(a2, A)(1− γi(a1, A)), and so on. Equation 2 on the other

hand specifies how peer influence within clusters determines the attention probabilities,

with an alternative’s likelihood of receiving attention being directly proportional to the

average probability of this alternative being chosen in the cluster.

3 Existence and stability

The first obvious question that needs to be addressed about an ATP equilibrium is regard-

ing its existence. The following result establishes that not only does such an equilibrium

exists, but is also unique.

Theorem 3.1. For any collection of strict preference rankings {≻i: i ∈ I}, homophilous

clustering N = {N1, . . . , NS} of I, and immunity from influence coefficients {βi : i ∈ I},
an ATP equilibrium exists in any menu of alternatives A ⊆ X. Further, this equilibrium

is unique.

12One interpretation of not choosing any of the alternatives in a menu is that some default alternative

is chosen.
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Proof: Please refer to Section A.1.

An ATP equilibrium is a static solution concept. Under it, the popularity of different

choices among peers instantaneously feed into the attention of agents, with these choice and

attention probabilities determined simultaneously. However, what if agents’ perceptions of

the popularity of alternatives, which in turn shape their attention are not formed instan-

taneously but with a lag? This consideration naturally raises the question of whether a

less demanding dynamic process of attention formation and adjustments in behavior could

make agents converge towards an ATP equilibrium. We now show that this is indeed the

case and an ATP equilibrium can be provided with such a dynamic foundation.

To that end, fix some menu of alternatives A ⊆ X and suppose individuals start off with

some initial choice probabilities over A, ((p0i (a,A))a∈A)i∈I . To begin with, these choice

probabilities of different individuals can be completely arbitrary and unrelated to one

other. Assume that over a “period” of time, the popularity of alternatives in the respec-

tive clusters, as captured by the average choice probabilities based on this initial profile

of individual choice probabilities, is observed by agents and shapes their attention prob-

abilities as under the ATP mechanism. We may think of this exercise as one of agents

observationally learning about the popularity of different alternatives in this menu among

their peers, and this learning driving their attention. Subsequently, these attention prob-

abilities generate updated choice probabilities according to the ATP mechanism. Suppose

this process of updating attention probabilities and subsequently choice probabilities pro-

ceeds in this manner indefinitely. We may ask whether the sequence of choice probabilities

generated thus converges to an ATP equilibrium. The proof of Theorem 3 allows us to

answer this question in the affirmative. The proof adapts the Banach fixed-point theorem,

which allows us to show that the relationship between initial and updated choice probabil-

ities, intermediated through attention probabilities, has a contractionary property, which

drives the convergence. The same argument establishes that this convergence does not

depend on the initial choice of ((p0i (a,A))a∈A)i∈I .

Corollary 3.1. For a menu A ⊆ X, let p0 = ((p0i (a,A))a∈A)i∈I be some profile of choice

probabilities. Let {≻i: i ∈ I} be a collection of preferences, N =
{
N1, ..., NS

}
a ho-

mophilous clustering, and {βi : i ∈ I} a collection of immunity from influence coefficients,

and p∗ = ((p∗i (a,A))a∈A)i∈I the associated ATP equilibrium. Define γt+1 as

γt+1
i (a, A) ≡ βi + (1− βi)

∑
j∈N(i)

∑
j∈N(i) p

t
j(a, A)

|N(i)|

and correspondingly define pt+1 as

pt+1
i (a, A) ≡ γt+1

i (a, A)
∏

a′∈A:a′≻ia

(1− γt+1
i (a′, A))

for each i ∈ I, a ∈ A. Then limt→∞ pt = p∗.
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This result, therefore, supports an interpretation of the ATP equilibrium as potentially

resulting from a process of observational learning. Formally, it establishes that the equi-

librium is asymptotically stable.

4 Identification

We now address the question about the identification of the parameters of the ATP model.

This exercise corresponds to an important concern in the literature about the identification

of structural parameters underlying peer effects. A less addressed but equally relevant

question is about the identification of the set of peers itself. There is a large econometrics

literature addressing the first question and an emerging one looking at the second. The

approach to identification we pursue here is based on decision-theoretic tools that rely on

behavioral variations across different menus of alternatives. That is, suppose an analyst

happens to maintain that the data she has on a profile of choice probabilities across menus

is generated by the ATP model. The question of identification is one about whether the

analyst can uniquely elicit the model’s parameters from this dataset. We show that for

the ATP model this is indeed the case, provided the dataset is rich enough in a precise

sense that we outline below.

To set this up formally, let X be a collection of non-empty subsets of X (i.e., menus of

alternatives) over which the analyst has data on the profile of choice probabilities. A

dataset is a joint random choice rule p : X → ∪A∈X [0, 1]
|A|×N , where for any A ∈ X ,

p(A) =

{
(pi(a, A))a∈A |

∑
a∈A

pi(a,A) ≤ 1, i ∈ I

}

Let Π be the collection of all such joint random choice rules. Let Ξ be the set of all

possible collections of model parameters. That is, ξ ∈ Ξ is a tuple of preference rankings,

a homophilous clustering, and immunity from influence coefficients,

ξ =
(
{≻i: i ∈ I} , N =

{
N1, ..., NS

}
, {βi : i ∈ I}

)
As a consequence of Theorem 3, we can define an equilibrium mapping E : Ξ → Π for

the ATP model that assigns to each ξ ∈ Ξ a unique joint random choice rule in Π. The

question of identification is essentially about a property of this equilibrium mapping.

Definition 4.1. The parameters of the ATP model are uniquely identified if the equilibrium

mapping E : Ξ → Π is injective.

Theorem 4.1. If X contains all two alternative menus, then the parameters of the ATP

model are uniquely identified.
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Proof: Please refer to Section A.3.

The key insight underlying the result is the observation that the identification problem

essentially reduces to the analyst’s ability to correctly identify the clusters. Once the clus-

ters are identified, exact identification of the preferences and the immunity from influence

coefficients is straightforward. To explain this in a bit more detail, suppose the analyst

has succeeded in identifying the clustering (N(i))i∈I . She can then determine for any i ∈ I

and any menu A, the average probability with which any alternative a ∈ A is chosen in

i’s cluster. Denote this by µ̂i(a,A) = 1
N(i)pi(a,A). Clearly, as long as the clusters are

uniquely identified, these average choice probabilities are as well. In the ATP model, as

we establish, information about these average choice probabilities are all that is needed

by the analyst to back out the preferences of the individuals and their immunity from

influence coefficients. For identifying preferences, we show in Lemma A.2 and Corollary

A.2 and A.3 that, for any i ∈ I and a, b ∈ X,

a ≻i b ⇐⇒ 1− pi(a, ab)

1− pi(b, ab)
≤ 1− µ̂i(a, ab)

1− µ̂i(b, ab)

In other words, the notion of revealed preference in the model is the following. For any

individual i, and any pair of alternatives, a, b ∈ X, if the ratio of the probability of i not

choosing a to not choosing b is no greater than the corresponding ratio for her cluster, then

i prefers a to b. Accordingly, as soon an the analyst is able to identify any individual’s

cluster, she is able to identify her preferences as well.

A similar observation applies to any individual i’s immunity from influence coefficient βi.

Consider any menu A in which i chooses stochastically, i.e., pi(b, A) ̸= 1, for any b ∈ A, and

let a = max≻i A. Then, it is straightforward to derive that i’s susceptibility to influence,

1− βi is given by,

1− βi =
1− pi(a,A)

1− µ̂i(a,A)

The numerator, 1− pi(a,A) gives the probability of i not choosing a in A despite it being

her most preferred alternative. The denominator specifies the average probability of a not

being chosen in A in her cluster. Therefore, the ratio gives a measure of the extent to which

a not being chosen in her cluster translates to i not choosing it, despite it being her most

preferred alternative in A. Therefore, it reveals the extent of her susceptibility to influence.

Accordingly, as long as an individual’s cluster and her preferences can be uniquely identified

by the analyst, she can also uniquely identify her immunity from influence coefficient βi.

Therefore, the problem of uniquely identifying the parameters of the model boils down to

the analyst’s ability to identify the clusters. What makes such identification possible? As

the reader may have guessed, a key feature of the model that enables such identification

is the presence of preference homophily in the clustering. Despite the weak form in which

the model assumes homophily, in the presence of random attention, it is sufficient to
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provide the analyst enough information to uniquely identify the clusters. To see what

may go wrong w.r.t. identification when the clusterings are not homophilous, consider the

following example.

Example 4.1. Suppose X = {a, b, c} is the set of alternatives and I = {1, 2, 3, 4} the

set of individuals in society who are partitioned into the clustering N = {{1, 3} , {2, 4}}.
Further let their preferences be given by: a ≻1 b ≻1 c, a ≻2 b ≻2 c, a ≻3 c ≻3 b,

a ≻4 c ≻4 b; and their immunity from influence coefficients by β1 = β2 = 3/5 and

β3 = β4 = 2/5. Observe that the clustering is not homophilous, as a is the common best

alternative for all individuals and neither cluster agrees on ranking {b, c}. Applying the

structure of interactions underlying an ATP equilibrium (equations 1 and 2 of Definition

2.1) gives us the following profile: pi(a, A) = 1 for all i ∈ I and A such that a ∈ A, and

for the menu {b, c}, choice probabilities are given by,

p1 p2 p3 p4

b
√
1801−31

14

√
1801−31

14
3
√
1801−107

28
3
√
1801−107

28

c
√
1801−4
51

√
1801−4
51

√
1801−21

34

√
1801−21

34

However, since individuals 1 and 2 are replicas of one another, as are 3 and 4, the clustering

given by N̂ = {{1, 4} , {2, 3}}, along with the same preferences and influence coefficients,

also represents the same profile of choice probabilities as an ATP equilibrium.

What is it that frustrates the analyst’s attempt to exactly identify the clusters in this

example? To answer this question, a key observation is that what permits exact identifi-

cation in the model is a particular pattern of stochastic and deterministic behavior among

individuals in society. Since all individuals have a well-defined preference ranking over the

set of alternatives, they would in the absence of peer influence deterministically choose

the best alternative in any menu according to their preferences. Hence, the presence of

stochastic behavior suggests the possibility of peer influence through the random atten-

tion channel. At the same time, it is possible that even with peer influence they choose

deterministically. However, for them to do so under an ATP equilibrium what needs to

be true is that everyone else in their cluster does likewise (Corollary A.1). In other words,

the analyst may get an “upper bound” of an individual’s cluster by identifying all those

who choose an alternative from a menu with probability one whenever she does so. But

to get exact identification, there needs to be at least one menu where only those in her

cluster choose an alternative deterministically along with her and no one outside her clus-

ter does so. It is precisely here that homophilous clusterings comes to the analyst’s aid in

identification. Homophilous clusterings, by ensuring that between any two clusters there

exists at least some pair of alternatives over which one cluster unanimously prefers one

alternative and the other does not, guarantees that exact identification of clusters is pos-

sible. Going back to the example, we see this clearly as the menus in which individuals
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choose deterministically are the same for all of them. These are precisely those menus that

include alternative a, which is chosen with probability one in all of them. Based on this

choice data, the best that the analyst can do is to over-identify everyone’s cluster as all of

society. However, if the underlying clustering is not homophilous, she can’t improve upon

this upper bound any further.

At the same time, it should be noted that even without the homophily assumption, there

are profiles of choice probabilities that are rationalized by a unique collection of model

parameters. In Appendix A.5, we provide an example illustrating this point. However,

at the level of the equilibrium mapping, so long as there are at least 4 individuals in

society, Example 4.1 highlights the manner in which we can construct a profile of choice

probabilities that can be represented by multiple clusterings. That is, the equilibrium

mapping will not be injective.

Finally, the result also highlights that an analyst need not obtain choice data on all menus

to be able to identify the parameters of the ATP model. Having data on all binary

menus suffices for unique identification. The following example highlights the importance

of binary menus in the exercise of identifying model parameters.

Example 4.2. Suppose I = {1, 2} with both individuals in a single cluster. X = {a, b, c}
and the analyst has choice data on the menus X = {{a, b} , {a, c} , {a, b, c}}, given by

pi(a, ab) = pi(a, ac) = pi(a, X) = 1. Then, it is straightforward to verify that the

preference profile a ≻1 b ≻1 c, and a ≻2 c ≻2 b, along with any βi ∈ (0, 1) represent this

collection of choice probabilities. While that is enough to establish that the parameters of

the model are not uniquely identified, we can go a step further and note that if 1 and 2’s

preferences were interchanged, we would still obtain parameters that represent the dataset

we have.

5 Falsifiability

We now establish that our model is falsifiable based on observable choice data. To that

end, we provide conditions on this data that behaviorally characterize the model, thus

providing grounds for its falsifiability. In other words, suppose an analyst has a dataset

comprising of a profile of choice probabilities over some set of menus X , captured by a

joint random choice rule p : X → ∪A∈X [0, 1]
|A|×N . What conditions must the dataset p

satisfy for the analyst to maintain the hypothesis that it was generated by the interactions

underlying the ATP model? Equivalently, when can this analyst reject this hypothesis?

We provide three conditions on this dataset that answers this question.

The first key idea underlying this exercise is the following. In our set-up, each individual

has a single set of well-defined preferences; hence, without any other consideration or influ-
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ence, she should choose deterministically. Conversely, her choosing stochastically reveals

that others may influence her behavior, given the random attention that such influence

generates. That is, the constraint imposed by influence on behavior is that it prevents

individuals from independently choosing an alternative for sure from a menu like a stan-

dard decision maker. To understand this better, suppose a is i’s most preferred alternative

in a menu, but her peer j has a positive probability of choosing b in that menu. This

being so, she would draw i’s attention towards b, and introduce a chance of i choosing this

alternative, thus ensuring that she doesn’t choose a for sure. Conversely, the only scenario

under which i may end up choosing a for sure is if j doesn’t draw her attention towards

other alternatives through her behavior, i.e., she too chooses a for sure. Of course, the

argument is symmetric. i not choosing b for sure would influence j not doing so either.

This reasoning suggests a simple way to behaviorally determine who is connected to whom

in the influence network. Any i, j ∈ I are (revealed to be) connected if for any A ∈ X
and a ∈ A, pi(a, A) = 1 if and only if pj(a, A) = 1. Our first condition on the dataset

p requires it to be consistent with the observation that no individual is an island and ev-

eryone has connections, in addition to all such individuals exhibiting stochasticity in their

behavior. Note that we say that i ∈ I chooses stochastically if there exists some A ∈ X ,

s.t. pi(a,A) ̸= 1, for any a ∈ A.

Axiom 1 (Peer influence). Each i ∈ I chooses stochastically, and for any such i there

exists j ̸= i such that i and j are connected.

Denote the set of individuals to whom i ∈ I is connected by R(i). That is,

R(i) = {j ∈ I : pi(a, A) = 1 ⇐⇒ pj(a, A) = 1, A ∈ X , a ∈ A}

Further, define for any A ∈ X and a ∈ A, the average choice probability of a being chosen

in A in R(i) by:

µi(a,A) =
1

|R(i)|
∑

j∈R(i)

pj(a,A)

Our next condition delves into the question of when does a DM’s behavior reveal that she

has consistent preferences. Suppose, for some menu A and a ∈ A, pi(a,A) ≥ pi(b, A) or,

equivalently, 1−pi(a,A)
1−pi(b,A) ≤ 1, for all b ∈ B \ a. From this, can we infer that a is i’s most

preferred alternative in A? Well, not necessarily, because the choice probabilities, pi(a,A)

and pi(b, A), may reflect not just i’s preference but also the relative popularity of a vs. b

amongst i’s connections, as captured by µi(a,A) and µi(b, A). Hence, to make a correct

inference, one needs to take cognizance of this. One may do so by comparing the probability

ratio of i not choosing a to not choosing b, 1−pi(a,A)
1−pi(b,A) , to the corresponding ratio capturing

average choice behavior among her connections, 1−µi(a,A)
1−µi(b,A) . In particular, if the first ratio is

no larger than the second for any b ∈ A\a, then it reveals that a is indeed i’s most preferred

alternative in A. Our next condition draws on the standard independence of irrelevant
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alternatives (IIA) condition for deterministic choices to introduce the requirement that

such inferences about a DM’s preferences should not be menu dependent.

Axiom 2 (Stochastic IIA). For all i ∈ I and A ∈ X , ∃! a ∈ A such that 1−pi(a,A)
1−pi(b,A) ≤

1−µi(a,A)
1−µi(b,A) ,∀b ∈ A \ a; and for any B ⊆ A, with a ∈ B, 1−pi(a,B)

1−pi(b,B) ≤ 1−µi(a,B)
1−µi(b,B) , ∀b ∈ B \ a.

That is, in any menu A, there exists an alternative a ∈ A that is revealed to be the most

preferred, and in any sub-menu B of A in which a is present, the same is true.

Our final condition seeks to elicit from behavior the extent to which a DM is susceptible to

influence; and it imposes an independence requirement on such idiosyncratic susceptibility

to influence. To understand the idea behind the condition, note that for any menu A in

which i chooses stochastically, if a1 ∈ A is i’s most preferred alternative in the menu, then

the ratio 1−pi(a1,A)
1−µi(a1,A) captures the extent of i’s susceptibility to influence when it comes to her

likelihood of choosing a1. For instance, suppose pi(a1, A) = 0.9 and µi(a1, A) = 0.6. Then

it means that a 40% chance of a1 not being chosen on average amongst her connections

translates into a 10% chance of this alternative not being chosen by i, even though it is her

most preferred alternative. Hence, the ratio 0.1
0.4 = 1

4 captures i’s idiosyncratic susceptibility

to influence. Now consider i’s second most preferred alternative in A, call it a2. Note that

w.r.t. a2,
1−pi(a2,A)
1−µi(a2,A) is not the correct measure of idiosyncratic susceptibility to influence.

This is because a2 is not i’s most preferred alternative in A and that is part of the reason

why this alternative may not be chosen. Therefore, the correct probability to look at

is not the unconditional probability of a2 not being chosen, 1 − pi(a2, A), but rather the

probability that a2 is not chosen conditional on no alternative preferred to it, i.e., a1, being

chosen; specifically, the probability 1− pi(a2,A)
1−pi(a1,A) . The susceptibility to influence w.r.t. the

choice of a2 is then captured by the ratio
1− pi(a2,A)

1−pi(a1,A)

1−µi(a2,A) . If this susceptibility to influence

is independent of the alternatives to which the DM pays attention, then it should be the

case that 1−pi(a1,A)
1−µi(a1,A) =

1− pi(a2,A)

1−pi(a1,A)

1−µi(a2,A) . Our final condition requires that this idiosyncratic

susceptibility to influence should not vary across alternatives in a menu, nor should it vary

across menus. To capture this formally, we need to introduce some notation. First, for

any menu A in which i chooses stochastically, i.e., pi(b, A) ̸= 1, for any b ∈ A, and a ∈ A,

define:

Āi(a) =

{
b ∈ A :

1− pi(b, ab)

1− pi(a, ab)
≤ 1− µi(b, ab)

1− µi(a, ab)

}
Based on our discussion above, Āi(a) contains those alternatives in A that are revealed to

be preferred by i to a. Then the probability of a being chosen conditional on no alternative

that is revealed to be preferred to it being chosen is given by:

p∗i (a,A) =
pi(a,A)

1−
∑

b∈Āi(a)
pi(b, A)

Axiom 3 (Menu independence of influence). For any i ∈ I, menus A,B ∈ X in
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which i chooses stochastically, and a ∈ A, b ∈ B,

1− p∗i (a,A)

1− µi(a,A)
=

1− p∗i (b, B)

1− µi(b, B)
< 1

These three conditions together characterize the ATP model. We say that the dataset

p : X → ∪A∈X [0, 1]
|A|×N is ATP rationalizable if there exists model parameters ({≻i: i ∈

I}, N = {N1, ..., NS}, {βi : i ∈ I}) such that for any menu A ∈ X , (pi(., A))i∈I is an ATP

equilibrium for those parameters.

Theorem 5.1. Suppose all two and three alternative menus are in X . Then the dataset

p : X → ∪A∈X [0, 1]
|A|×N is ATP rationalizable if and only if it satisfies peer influence,

stochastic IIA, and menu independence of influence.

Proof: Please refer to Section A.4.

Remark 5.1. Manzini and Mariotti (2014) note that in an individual choice setting, a

random consideration set model with menu-dependent attention probabilities can neither

be falsified, nor can the individual’s preferences or attention probabilities be identified. In

our model, even though attention probabilities are menu-dependent, due to their endoge-

nous determination through peer behavior, the model is indeed falsifiable, as the result

above shows. Moreover, the mechanism underlying attention probabilities allows us to

uniquely identify the individual’s set of peers, and thereby their preferences and immunity

from influence coefficients through comparison of their choice probabilities with those of

their peers. We leave it for future research to investigate under what conditions are models

with menu-dependent attention probabilities falsifiable.

6 Measurement of peer effects and the social multiplier

We now study what our model implies for the measurement of peer effects and the presence

of a social multiplier. The leading models through which endogenous peer effects have

been measured in the literature are the linear-in-means (LIM) model and the discrete

choice model. Under the LIM model, endogenous social effects are captured in terms of a

stochastic linear relationship between an individual’s outcome or action and the average

of the same in her peer group. Discrete choice models capture this through a non-linear

specification that makes an individual’s probability of choosing an outcome depend on

the choice probabilities of her peers. As mentioned in the Introduction, both of these

specifications can be derived based on micro-founded equilibrium models of interactions.

A related question that has received considerable attention is whether such interactions

imply a social multiplier. A social multiplier exists when a common shock to fundamentals

produces not just a direct effect on individual behavior but also an indirect effect through
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social interactions, with the multiplier defined as the ratio of the total (direct and indirect)

effect to the direct effect. A key observation in the literature is that whether a social

multiplier exists or not crucially depends on the underlying source of social interactions

(Boucher and Fortin, 2016). For instance, both the spillover and pure conformity models of

peer effects imply the linear-in-means specification, but whereas a social multiplier exists

in the former, it doesn’t in the latter. In other words, even though a particular set of

interactions may produce an endogenous peer effect that, say, an econometrician measures

from the data, it will be a mistake to assume from there that a social multiplier is also

implied by those interactions.

We show below that the measurement of peer effects in our model connects both to the

discrete choice and LIM set-ups. Like with discrete choice models of peer effects, it im-

plies a non-linear relationship between an individual’s choice probabilities and that of

her peers. The key economic content of this non-linearity is that it implies a crowding

out effect whereby the peer effects associated with more preferred alternatives crowds out

that of less preferred ones. Further, when the model is written out in expectations form,

somewhat in the spirit of the LIM model but distinct from it, it implies a quasi-linear

relationship between own expected outcomes and average expected outcomes of peers.

This quasi-linearity is a consequence of the crowding out effect, which in turn determines

the measurement error that the LIM model is susceptible to. Further, interactions in the

model does indeed generate a social multiplier.

6.1 Measuring endogenous peer effects

To make these observations, we consider a simple set-up in which an individual’s outcome

or action in some activity—for concreteness, we refer to it as effort—is determined through

the ATP mechanism. Suppose individuals choose between high (eH) and low (eL) effort

levels, with a default effort level denoted by e∗. We assume that eH > eL > e∗ = 0 and

consider a cluster of individuals N s = {1, ..., n} with associated parameters (≻i)i∈Ns and

(βi)i∈Ns , where eH ≻i eL or eL ≻i eH .

Consider an individual i for whom eH ≻i eL. If the probability distribution over effort

levels is generated by the ATP model, for such an individual, the probabilities of choosing

each level of effort are given by:13

pi(e) =


βi + (1− βi)µH e = eH

βi + (1− βi)µL − (1− βi)µL(βi + (1− βi)µH))− βi(βi + (1− βi)µH)) e = eL

(1− βi)
2(1− µH)(1− µL) e = e∗,

where µH = 1
n

∑
j∈Ns pj(eH) and µL = 1

n

∑
j∈Ns pj(eL) denote the average probability in

13Similar expressions can be derived for i with eL ≻i eH .
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the cluster of choosing eH and eL, respectively.

A key observation to understand the working of peer effects in our model is the following.

Whereas it is true that the probability of exerting the most preferred level of effort, say

eH , is linear in the mean probability of peers exerting this level of effort, µH , the same is

not true for other levels of effort. This is because the probability of choosing a particular

effort level is a function of all alternatives weakly preferred to it. Since an alternative

is chosen only when it receives attention and all alternatives preferred to it do not, the

probability of choosing the less preferred alternative for this individual, eL, depends not

just on µL, but also on µH . Specifically, when it comes to µL, observe that although

pi(eL) is increasing in µL overall, this relationship is intermediated by both a positive and

negative effect. First, there is the positive effect given by the term (1 − βi)µL, according

to which pi(eL) is increasing linearly in the mean probability of peers exerting this level

of effort, just like for pi(eH). But, at the same time, there is a non-linear negative effect

brought about by the interaction term (1 − βi)µL(βi + (1 − βi)µH). This term accounts

for the fact that for any marginal increase in µL, the whole change doesn’t pass on to

the choice probability pi(eL) as considering only the positive effect would suggest. Rather,

only a fraction of it does, where this fraction is precisely the probability of eH not receiving

attention, i.e., the fraction βi + (1− βi)µH corresponding to the probability that eH does

receive attention needs to be discounted, and this is what the non-linear interaction term

does. By this channel, therefore, the higher is µH , the lower is the impact of changes in

µL on pi(eL). This is the exact sense in which more preferred alternatives crowd out the

peer effects of less preferred alternatives—the attention received by alternatives strictly

preferred to it directly come in the way of higher probabilities of peers choosing this

alternative translating into a decision-maker doing so. This also explains why, once this

crowding out effect coming from strictly preferred alternatives are discounted, a linear-in-

means relationship does indeed hold for all alternatives in a conditional sense. To see this,

note that:
pi(eL)

1− pi(eH)
= βi + (1− βi)µL

That is, the probability of choosing eL, conditional on no alternative preferred to it, i.e.,

eH , being chosen is indeed linear in µL. The same relationship would also hold for a set-up

with more than two alternatives.

A natural way to estimate these choice probabilities from finite observations of effort levels

is to use a maximum likelihood estimator. Suppose an analyst observes m profiles of effort

levels for the cluster N s. Letting eki denote the k-th observation of i’s effort, the joint

probability of observing the dataset e =
((

eki
)
i∈I

)
1≤k≤m

given parameters θ = (βi, ≻i)i∈I

is

P (e | θ) =
m∏
k=1

∏
i∈I

pi(e
k
i )
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where (pi)i∈I is the joint random choice rule derived by the ATP mechanism given the

parameters θ and the trivial clustering. Naturally, the m-adjusted log-likelihood function

can be written as

ℓ̂m (θ|e) =
∑
i∈I

log (1− pi(eH)− pi(eL)) + f̂i(eH) log

(
pi(eH)

1− pi(eH)− pi(eL)

)
+
∑
i∈I

f̂i(eL) log

(
pi(eL)

1− pi(eH)− pi(eL)

)

where f̂i(e) is the observed frequency of individual i choosing effort level e. Thus, we

can observe that f̂ =
(
f̂i

)
i∈I

is minimal sufficient for θ. Further, given f̂ , we can obtain

the maximum likelihood estimate, θ̂m = argmax ℓ̂m(θ | e), for the sample e.14 Under

the assumption that preferences are not unanimous, the model parameters are uniquely

identified (Theorem 4.1), and ℓ̂m(· | e) is continuous in (βi)i∈I .
15 Then, by the finiteness of

−
∑

(ei)i∈I

[
P((ei)i∈I |θ)

∑
i∈I log(pi(ei))

]
for all θ, where the summation is over all possible

profiles of effort levels, θ̂m is consistent (Seo and Lindsay, 2013).

Next, we relate the measurement of peer effects in our model with that in the linear-in-

means model. For that, we first write the expected effort level of an individual, given the

choice probabilities derived above. For an individual for whom eH ≻i eL, this is given by:

E [ei] = pi(eH)eH + pi(eL)eL

= βi(eH + (1− βi)eL) + (1− βi)Eµ [e]− (1− βi)eL[βi(µH + µL) + (1− βi)µHµL]

where Eµ [e] is the average expected effort in i’s cluster, 1
n

∑
j∈Ns E [ej ]. Equivalently, it is

the expected effort based on the average probability distribution over choices in the cluster,

µ. The expression highlights that the expected effort level of any individual is linear in the

average expected level of her peers. But unlike a linear-in-means formulation, under our

model, her expected effort also depends on the distribution of average peer behavior. This

non-linear effect captured by the third term in the RHS of the expression above directly

draws from the crowding out effect highlighted above.

To formally relate these insights to the LIM model, we must first accommodate the ATP

specification written in expectations form into a statistical model, for which we require

an exogenous source of variation in the determination of µ and subsequently Eµ [e]. We

do so by introducing ex-ante randomness in the determination of individual preferences.

For instance, suppose the preferred effort level for each individual i ∈ N s, eH or eL, is

determined probabilistically, independently of each other. The independent realization of

preferences ensures that the only mechanism of influence between peers is through the

14The MLE is not well-defined if f̂i is not full support for some individual i. While this may be of concern

with finite observations, it becomes asymptotically irrelevant.
15Continuity can be established by the contraction mapping in the proof of Theorem 3 and Theorem 1

of Jachymski (2023).
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choice probabilities in our model, rather than in the joint determination of preferences.

Given this, under the ATP mechanism, the true relationship between expected effort of

individual i and the average behavior of her peers is specified by

E [ei] = βi(eH + (1− βi)eL) + (1− βi)Eµ [e]

− (1− βi)eL[βi(µH + µL) + (1− βi)µHµL]

− (eH − eL)(β
2
i + (1− βi) [βi(µH + µL) + (1− βi)µHµL])1 [eL ≻i eH ]

Given the distribution over preference profiles, i’s expected effort, E [ei] the average ex-

pected effort, Eµ [e], average choice probabilities µ, and the indicator function, 1 [eL ≻i eH ],

on preferences16 are random variables.

Now, suppose that the data on expected effort levels underlying peer influence were being

generated by the ATP model but an econometrician tried to measure peer effects using the

LIM model. What is the bias that would be introduced in the measurement? In the LIM

model, the behavior of any given individual is linearly influenced by the average behaviors

of her peers alone. Keeping the underlying structure of the social network the same as

under our model, consider the special case with simple averages of peer behavior. The

LIM model would assume the expected effort of individual i to be:

E [ei] = αi, LIM + γi, LIM Eµ [e] + ϵi

where αi, LIM is a constant, and γi, LIM is the peer effects coefficient under the LIM model,

which measures the marginal effect of average expected outcome of peers on individual i’s

expected effort. Note that in the LIMmodel, the µ terms and indicator of preferences would

be relegated to the residual. In general, these quantities are correlated with the average

expected effort. As such, if choice probabilities are generated according to our model, the

residual would fail to be conditionally mean-independent of the average expected effort.

Then, the estimate from the LIM model, γi, LIM , will not be unbiased for 1− βi from the

ATP model.17

Even if we allow for the average probabilities of choosing eH and eL to be considered as

linear covariates in the specification, the product term ensures that no completely linear-

in-means specification can accurately account for the peer effects under our model. Finally,

the sample size does not improve the accuracy of the LIM estimator. For a given cluster

of size n, as the number of samples, m, increase, the sample distribution of the values of µ

and Eµ [e] resemble their theoretical distribution induced from the underlying distribution

over preference profiles. However, given the correlation between Eµ [e] and the error term,

the bias in the estimation of 1− βi persists. Thus, the estimator is inconsistent.

161 [eL ≻i eH ] = 1, if eL ≻i eH ; 0 otherwise.
17Note that V ar(Eµ [e])(γi, LIM −(1−βi)) = −(1−βi)eLCov(Eµ [e] , βi(µH+µL)+(1−βi)µHµL)−(eH−

eL)(β
2
i Cov(Eµ [e] , [eL ≻i eH ]) + (1− βi)(eH − eL)Cov(Eµ [e] , [eL ≻i eH ] (βi(µH + µL) + (1− βi)µHµL)).

This is generally not zero. Numerical simulations indicate this is, in fact, positive.
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6.2 The social multiplier

To analyze the question regarding the social multiplier in our model, we study the direct

and indirect impact of a common shock to fundamentals on individual behavior. As an

illustration, think of the common shock as the introduction of a new individual to the

existing cluster. Suppose this individual prefers eH to eL and, to do the exercise in the

simplest possible way, we assume that she is not influenced by anyone and, accordingly,

chooses eH with probability one. What we want to study is the consequence on the behavior

of the existing individuals in the cluster if links are established between this individual and

all of the others.

To simplify the problem, we assume that all individuals have a common immunity from

influence parameter, β. Denote by k the number of individuals who prefer eH to eL. An

ATP equilibrium can be fully characterized as a solution to a system of two equations in

two unknowns, γH(k) and γL(k), where γH(k) denotes the attention probability of eH for

an individual who prefers eH to eL, and γL(k) denotes the the attention probability of eL
for an individual who prefers eL to eH :

γH(k) = β + (1− β)

(
kγH(k) + (n− k)(1− γL(k))γH(k)

n

)
γL(k) = β + (1− β)

(
k(1− γH(k))γL(k) + (n− k)γL(k)

n

)
To calculate the direct effect of the common shock, we consider the change to the attention

probabilities from introducing this new individual who chooses eH with probability one,

while holding fixed the choice probabilities of the original individuals in the cluster. That

is,

γdH = β + (1− β)

(
kγH(k) + (n− k)(1− γL(k))γH(k) + 1

n+ 1

)
γdL = β + (1− β)

(
k(1− γL(k))γH(k) + (n− k)γL(k)

n+ 1

)
Meanwhile, the total effect is calculated based on the change to the new equilibrium

attention probabilities,

γH = β + (1− β)

(
kγH + (n− k)(1− γL)γH + 1

n+ 1

)
γL = β + (1− β)

(
k(1− γH)γL + (n− k)γL

n+ 1

)
We then define the social multiplier as the ratio of the change in the average expected

effort between the two equilibria to the change in the average expected effort solely from
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the direct effect on attention probabilities,18

M =
∆total Eµ [e]

∆direct Eµ [e]

We numerically examine the existence of the social multiplier (M > 1) and its relationship

with k and β. For illustration, let eH = 2, eL = 1, e∗ = 0, and n = 20. First, Figure 1

shows the relationship between the social multiplier and β with k fixed at 10. As expected,

Figure 1: Social multiplier varying with β

the social multiplier is inversely related to β, with the social multiplier approaching 1 as

β → 1. Since 1 − β functions as the peer effect coefficient in our model, defined as the

marginal effect of an increase in average choice probability of an an alternative on an

individual’s choice probability, this shows that the social multiplier is indeed increasing

and convex in the peer effect coefficient.

On the other hand, we see that the social multiplier varies non-monotonically with k, as we

hold β fixed. Figure 2 depicts this relationship with β fixed at 0.5. This non-monotonicity

of the social multiplier in k primarily arises from the non-linearity of the choice probabilities

of the different effort levels. Adding a new individual who prefers eH to eL increases the

probability of choosing eH , but also increases the probability of choosing e∗ when k is

low. This effect is maximized when everyone prefers eL, as the probability of choosing

eH suddenly increases from 0 to a positive number. However, the multiplier sharply falls

thereafter, and achieves a local maximum when 14 of 20 individuals prefer eH . Though

the increase in the probability of choosing e∗ from adding the new individual declines in

k, so does the increase in the probability of choosing eH . As a result, we see a declining

social multiplier as k approaches n.

A key observation to make here is the existence of the social multiplier at all parameter-

18We exclude the newly added individual from the average
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Figure 2: Social multiplier varying with k

izations in our model. As observed in the literature vis-a-vis the models of spillovers and

conformity, though both imply a linear-in-means first-order condition, the former exhibits

a social multiplier effect while the latter does not. This is because a positive exogenous

shock to an individual’s action elicits a positive response from both the individual and their

peers in the presence of spillovers, but these responses are dampened under a conformity

motive. In our model, peer effects are akin to those in the spillover model. An exogenous

shock to an individual that increases their probability of paying attention to an alternative

increases their probability of choosing that alternative, and therefore the probabilities of

all their peers paying attention to said alternative. The resultant increase in the average

probability of choosing the alternative further increases the attention probabilities, and so

on, thus explaining the existence of the social multiplier effect.

7 Conclusion

In this paper, we have developed the micro-foundations of a theory of peer effects via

the mechanism of socially influenced attention. To do so, we defined the new equilibrium

notion of an attention through peers equilibrium. We established that ATP equilibrium

uniquely exists for any admissible set of parameters. We then showed that the parame-

ters of the model are uniquely identified. This exercise highlights how decision-theoretic

approaches can complement econometric ones in solving challenging questions of identifi-

cation in environments with social interactions and peer effects, a strategy that we hope

future work shall continue to utilize in addressing questions of identification. We also pro-

vided three intuitive axioms that characterize the class of datasets that arise from ATP

equilibria. This allows us to falsify the model based on choice data, which is important
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to do as different mechanisms of peer influence, with very different economic and policy

implications may be compatible with the same reduced form specification. Finally, we

related our model to the literature on the measurement of peer effects, and demonstrated

how our mechanism connects to the work on estimating peer effects using discrete choice

and linear-in-means models. From an econometric point of view, our model parameters can

be directly estimated from choice data in a manner akin to models of discrete choice. The

key point about the non-linearity in the measurement of peer effects in our model is the

crowding out effect, whereby more preferred alternatives crowd out peer effects associated

with less preferred ones. Furthermore, we showed that the nature of the non-linear rela-

tionship between an individual’s and their peers’ choice probabilities are in a manner that

imply their expected outcomes are quasi-linear in the mean expected outcomes of their

peers. Therefore, our model draws a meaningful connection between these two distinct

strands of the literature on measuring peer effects.

While our work, in its current scope, is focused on analyzing the ATP mechanism and

its theoretical implications for observable behavior, our model can be naturally extended

to better suit a rigorous empirical exercise. The literature on peer effects discusses the

challenges of identifying endogenous peer effects when contextual and correlated effects

also affect behavior. We showed in this paper that decision-theoretic tools can be used

to identify both the sets of peers and the extent of peer effects. However, we do so in an

environment where the relationship between an individual’s behavior and that of their peers

exists solely through the endogenous peer influence channel. Incorporating contextual and

correlated effects in our model would allow a full determination of the extent to which our

approach complements existing empirical ones to measuring peer effects. In particular,

the question of how contextual effects may impact attention appears to be an important

one.19 We hope future work shall utilize the framework we have developed here to analyze

these set of questions.

A Appendix

A.1 Proof of Theorem 3.1

Note, since all interactions are intra-cluster and there are no inter-cluster interactions, it

suffices to show that an ATP equilibrium exists within every cluster. Secondly, since the

equilibrium notion is defined at the level of the menu, we only need to consider an arbitrary

menu. Consider a cluster N t with |N t| = J > 1.

19For example, think of educational outcomes of students which are clearly affected by the attention

students show in the classroom. Very likely, this attention depends on the classroom infrastructure and

quality of the school, which are partly determined by contextual factors like the income of the neighborhood,

especially when schools are financed by local taxes.
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Now consider a menu A = {a1, . . . , aM}. Let ∆M = {(q1, . . . , qM ) ∈ RM
+ :

∑M
m=1 qm ≤ 1}

denote the unit M -simplex in RM
+ . Define the mapping ζ = (ζi,m)m=1,...,M

i=1,...,J : ∆J
M → ∆J

M

as follows: for any i ∈ N t, m ∈ {1, . . . ,M}, and p = (pj,m)m=1,...,M
j=1,...,J ∈ ∆J

M , let

ζi,m(p) =

(
βi + (1− βi)

∑J
j=1 pj,m

J

) ∏
m′:am′≻iam

(1− βi)

(
1−

∑J
j=1 pj,m′

J

)

We first establish that ζ is a well defined mapping. To do so, establishing the following

claim suffices.

Claim: For any i ∈ N t and p ∈ ∆J
M , (ζi,1(p), ζi,2(p), . . . , ζi,M (p)) ∈ ∆M .

Proof. For each j ∈ N t and m = 1, . . . ,M , pj,m ∈ [0, 1] and, hence, µi,m(p) :=
∑J

j=1 pj,m
J ∈

[0, 1]. This in turn implies that γi,m(p) := βi + (1 − βi)µi,m(p) ∈ [0, 1] as βi ∈ (0, 1);

and, hence, 1− γi,m(p) ∈ [0, 1]. Accordingly, ζi,m(p) = γi,m(p)
∏

{m′:am′≻iam}(1− γi,m′(p))

is a product of terms which all lie in [0, 1] and so ζi,m(p) ∈ [0, 1]. Further, ζi,M+1(p) =∏M
m=1(1− γi,m(p)) is also a product of terms which all lie in [0, 1] and, hence, ζi,M+1(p) ∈

[0, 1] as well.

Next, we establish that
∑M

m=1 ζi,m(p) ≤ 1. It is sufficient to establish that for each p there

exists a non-negative number z(p) such that zi(p)+
∑M

i=1 ζi,m(p) = 1. To that end, define

zi : ∆
J
M → R+ as

zi(p) =

M∏
m=1

(1− γi,m(p))

Since γi,m(p) ∈ (0, 1] for each 1 ≤ m ≤ M , zi(p) ∈ [0, 1]. Further, assume w.l.o.g. that

a1 ≻i a2 ≻i · · · ≻i aM .

By definition, ζi,M (p)+zi(p) = γi,M
∏M−1

m=1 (1−γi,m)+
∏M

m=1(1−γi,m) =
∏M−1

m=1 (1−γi,m).20

Further, if zi(p) +
∑M

m=ℓ ζi,m(p) =
∏ℓ−1

m=1(1− γi,m) for some 3 ≤ ℓ ≤ M , then

zi(p) +
M∑

m=ℓ−1

ζi,m(p) = ζi, ℓ−1(p) +
ℓ−1∏
m=1

(1− γi,m)

= γi, ℓ−1

ℓ−2∏
m=1

(1− γi,m) + (1− γi, ℓ−1)

ℓ−2∏
m=1

(1− γi,m)

=
ℓ−2∏
m=1

(1− γi,m)

20We write γi,m instead of γi,m(p) to economize on notation.
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Accordingly, zi(p) +
∑M

m=2 ζi,m(p) = 1− γi, 1 and ζi, 1(p) = γi, 1, which means that zi(p) +∑M
m=1 ζi,m(p) = 1− γi, 1 + γi, 1 = 1. Hence,

∑M
m=1 ζi,m(p) ≤ 1 and (ζi,1(p), . . . , ζi,M (p)) ∈

∆M and accordingly the mapping ζ is well defined.

To show that an ATP equilibrium exists in menu A, it suffices to show that ζ has a

fixed point. The uniqueness of this fixed point would yield the uniqueness of the ATP

equilibrium. To that end, we use Banach’s fixed point theorem.

Theorem A.1 (Banach’s Fixed Point Theorem). Every contraction mapping from a com-

plete metric space to itself admits a unique fixed point.

(RM×J , || · ||) is a complete metric space, where || · || is the Euclidean norm on RM×J .

Since ∆J
M is a compact subset of RM×J , it is also a complete metric space under the

metric induced by the norm. Then, it is enough to show that ζ is a contraction mapping

on the open set DJ
M , where DM = int(∆M ). To do so, write ζ as a composition of maps.

First, let µ be the vector of average choice probabilities of each alternative in the cluster.

That is, µ(m) =
∑J

j=1 pj,m
J . Let µi denote the vector that permutes the components

of µ in order of ≻i. That is, µi,m is the average probability of choosing the ≻i m-th

best alternative in A. Then let ν : ∆J
M → ∆J

M be a map such that its i-th component

νi : ∆
J
M → ∆M is defined as νi(p) = µi. Now consider the operator T : RM×J → RM×J

that takes a vector v ∈ RM×J and is defined as Tm+jM (v) = Tm(v) = J−1
∑J−1

j=0 vm+jM .

When acting on p ∈ ∆J
M , T gives J vertically stacked copies of µ. Since ν is a permuted

version of T , |ν| = |T |, where | · | is the operator norm, defined for a linear operator

T : RM×J → RM×J as |T | = supv∈RM×J
||Tv||
||v|| . Since T ’s matrix under the standard basis

is J−1 · 1J×J ⊗ IM×M ,21 |T | = 1. Thus, |ν| = 1 and ν is a non-expansive mapping.

Now, consider the mapping η : ∆J
M → ∆J

M , such that each of its components ηi : ∆M →
∆M take a vector µi and yield a new vector of choice probabilities ηi(µi), such that applying

a permutation mapping Pi : ∆M → ∆M that reorders choice probabilities in the original

order of A = {a1, ..., aM}, to satisfy Pi(ηi(µi)) = ζi(p).

To see that η is indeed a contraction mapping on ∆J
M , we start by looking at the Jacobian

matrix of ηi, ∂ηi, and start by showing that

sup
DM

ρ(∂ηi(µi)) < 1

where ρ(T ) denotes the spectral radius (largest eigenvalue in absolute value) of an operator

T . To do so, note that ∂ηi(µi) is a lower triangular matrix, and its eigenvalues are its

diagonal entries, which are

∂ηi,m
∂µi,m

∣∣∣
µi

= (1− βi)
∏

m′:am′≻iam

(1− βi)(1− µi,m′)

211J×J is a square matrix of ones, IM×M is the identity matrix of size M , and ⊗ is the Kronecker product
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Since each of the terms (1−βi)(1−µi,m′) < 1, ρ(∂ηi(µi)) = 1−βi. Note then that ∂η(µ) for

µ ∈ DJ
M is simply the block diagonal matrix with each block being ∂ηi(µi). This implies

that ∂η(µ) is also lower triangular, and supDJ
M
ρ(∂η(µ)) = maxj supDM

ρ(∂ηj(µj)) = 1 −
minj βj < 1. Then, η is a locally contractive mapping on all of ∆J

M (Hefti, 2015). Note,

since ∆J
M is compact, η is uniformly locally contractive (Jungck, 1982). Then, since ∆J

M

is convex, the shortest path between any two points in ∆J
M is given by a straight line

between them. By Lemma 2.2 of Ciesielski and Jasinski (2016), η is a contraction mapping

on ∆J
M .22 Then, by the non-expansiveness of ν, and P = (Pj)

J
j=1 being a permutation

map, ζ : P ◦ η ◦ ν is a contraction map on ∆J
M . Then, by the Banach fixed point theorem,

ζ has a unique fixed point p∗.

A.2 Key Lemmas

We now prove a few lemmas that hold for ATP equilibria. These lemmas will be used

to prove the identification result (Theorem 4.1) and the necessity of the axioms for the

representation (Theorem 5.1). Let p be an ATP rationalizable joint random choice rule

such that for ξ = ({≻i: i ∈ I} , N, {βi : i ∈ I}) ∈ Ξ, p = E(ξ). In the way of notation, for

any i ∈ I, A ∈ X and a ∈ A, let

µ̂N(i)(a,A) =
1

|N(i)|
∑

j∈N(i)

pj(a,A)

denote the average probability of choosing a in A in i’s cluster N(i). Whenever there is

no ambiguity regarding the underlying clustering we are referring to when evaluating this

average choice probability, we will simply write µ̂i instead of µ̂N(i). Further, we say that

a non-singleton menu A ∈ X is a full support menu (FSM) for i ∈ I if pi(a,A) > 0 for all

a ∈ A. We denote the set of all FSMs for i by Xi. Then, the following conclusion follows.

Lemma A.1. For every i ∈ I, A /∈ Xi iff ∃a such that a = max≻j A for all j ∈ N(i).

Proof. Suppose there exist j, j′ ∈ N(i) such that max≻j A ̸= max≻j′ A. Then, if a =

max≻i A, ∃j ∈ N(i) s.t. b = max≻j A, a ̸= b. Since βk > 0, ∀ k ∈ I, pi(a, A) = γi(a, A) =

βi+(1−βi)µ̂i(a,A) > 0, and pj(b, A) = γj(b, A) = βj +(1−βj)µ̂i(b, A) > 0. This implies

pi(a
′, A) < 1, ∀a′ ∈ A \ a; pj(a

′, A) < 1,∀a′ ∈ A \ b. That is, ∀a′ ∈ A, pℓ(a
′, A) < 1, for

some ℓ ∈ N(i). Accordingly, µ̂i(a
′, A) < 1, ∀a′ ∈ A.

Now consider any c ∈ A. Since µ̂i(c, A) < 1 and βi ∈ (0, 1), γi(c, A) = βi + (1 −
22Formally, ∆J

M is connected, compact, and convex. As a result, it is ϵ-chainable in the language of

Ciesielski and Jasinski (2016), where the Dϵ(x, y), defined as the length of the shortest ϵ-chain from x to

y is equal to d(x, y) (d being the metric induced by norm || · || on ∆J
M ) due to convexity. As such, ∆J

M is

a contraction with respect to d.
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βi)µ̂i(c, A) ∈ (0, 1). γi(c, A) ∈ (0, 1) implies 1 − γi(c, A) ∈ (0, 1). As a consequence,

pi(c, A) = γi(c, A)
∏

c′≻ic
(1− γi(c

′, A)) ∈ (0, 1). Since this is true for all c ∈ A, A ∈ Xi.

Next, suppose exists a ∈ A such that a = max≻j A for all j ∈ N(i). Suppose pi(a,A) < 1.

Then µ̂i(a,A) < 1. For all j ∈ N(i), βj > 0 implies

pj(a,A) = γj(a,A) = βj + (1− βj)µ̂i(a,A) > µ̂i(a,A)

That is, ∀j ∈ N(i), pj(a,A) > µ̂i(a,A), which implies µ̂i(a,A) > µ̂i(a,A)! Hence, under

an ATPE, pi(a, A) = 1 and A /∈ Xi.

The proof of the Lemma establishes the following corollaries.

Corollary A.1. The following statements are equivalent:

1. A /∈ Xi, i ∈ I

2. pi(a,A) = 1, for some a ∈ A

3. a = max≻j A for all j ∈ N(i)

4. pj(a,A) = 1, ∀j ∈ N(i)

Lemma A.2. Let A ∈ X and i ∈ I. Then:

(i) A ∈ Xi =⇒
[
a = max≻i A ⇐⇒ 1−pi(a,A)

1−pi(b,A) < 1−µ̂i(a,A)
1−µ̂i(b,A) , ∀b ∈ A \ a

]
(ii) A /∈ Xi =⇒ [a = max≻i A ⇐⇒ pi(a,A) = 1]

Proof. Let A = {a1, . . . , aM} ∈ Xi be s.t. a1 ≻i a2 ≻i · · · ≻i aM . Since A ∈ Xi, for the

derivation below, note that
∑l

m=1 pi(am, A) ∈ (0, 1), or equivalently, 1−
∑l

m=1 pi(am, A) ∈
(0, 1) for all l = 1, . . . ,M − 1. Now,

pi(a1, A) = γi(a1, A) = βi + (1− βi)µ̂i(a1, A)

⇒ 1− βi =
1− pi(a1, A)

1− µ̂i(a1, A)

Note that, under an ATPE, an alternative al ∈ A not being chosen corresponds to the

event that either this alternative is not considered or some alternative preferred to it is

considered. Accordingly, it is straightforward to derive that the probability that the m

≻i-top alternatives are not chosen, 1 −
∑

k≤m pi(ak, A), is equal to the probability that
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none of them is considered, which by the independence of the consideration of alternatives

is
∏

k≤m(1− γi(ak, A)). Then,

pi(am, A) = γi(am, A)
∏

k≤m−1

(1− γi(ak, A))

=⇒ γi(am, A) =
pi(am, A)

1−
∑

k≤m−1 pi(ak, A)

=⇒ 1− [βi + (1− βi)µ̂i(am, A)] = 1− pi(am, A)

1−
∑

k≤m−1 pi(ak, A)

Accordingly,

1− βi =
1− pi(am, A)

1−
∑

k≤m−1 pi(ak, A)

1− µ̂i(am, A)
(3)

Since 1−
∑

k≤m−1 pi(ak, A) ∈ (0, 1) for all 2 ≤ m ≤ M ,

1− pi(am, A)

1−
∑

k≤m−1 pi(ak, A)
< 1− pi(am, A)

=⇒ 1− pi(a1, A)

1− µ̂i(a1, A)
= 1− βi <

1− pi(am, A)

1− µ̂i(am, A)

Hence, 1−pi(a,A)
1−µ̂i(a,A) < 1−pi(b,A)

1−µ̂i(b,A) or 1−pi(a,A)
1−pi(b,A) < 1−µ̂i(a,A)

1−µ̂i(b,A) , ∀b ∈ A \ a, if a = max≻i A. To

establish the only if direction, suppose 1−pi(a,A)
1−pi(b,A) < 1−µ̂i(a,A)

1−µ̂i(b,A) , ∀b ∈ A \ a, but â ̸= a is

≻i-best in A. Then based on the argument above, it follows that 1−pi(â,A)
1−pi(a,A) <

1−µ̂i(â,A)
1−µ̂i(a,A) , or

1−pi(a,A)
1−pi(â,A) >

1−µ̂i(a,A)
1−µ̂i(â,A) , a contradiction!

Now consider the case A /∈ Xi. Lemma A.1 implies that there exists a ∈ A such that

a = max≻j A for all j ∈ N(i). Then as shown in the proof of that Lemma and stated in

Corollary A.1, a = max≻i A iff pi(a,A) = 1.

Lemma A.2 implies the following corollary:

Corollary A.2. For all i ∈ I and A ∈ X ,

a = max
≻i

A ⇐⇒ 1− pi(a,A)

1− pi(b, A)
≤ 1− µ̂i(a,A)

1− µ̂i(b, A)
,∀b ∈ A \ a

Proof. If A ∈ Xi, then the conclusion follows immediately from the first statement of

Lemma A.2.

Now suppose A /∈ Xi. By the second statement of Lemma A.2, a = max≻i A iff pi(a, A) = 1

iff pi(b, A) = 0, ∀b ∈ A \ a. Then, for any b ∈ A \ a, 1−pi(a,A)
1−pi(b, A) = 0

1 = 0. Further,

pi(b, A) = 0 =⇒ µ̂i(b, A) < 1. Accordingly, 1−µ̂i(a,A)
1−µ̂i(b, A) is defined and non-negative. Thus,
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1−pi(a,A)
1−pi(b, A) ≤ 1−µ̂i(a,A)

1−µ̂i(b, A) , ∀b ∈ A \ a. To establish the other direction, suppose 1−pi(a,A)
1−pi(b, A) ≤

1−µ̂i(a,A)
1−µ̂i(b, A) , ∀ b ∈ A \ a, but a′ = max≻i A ̸= a. Then, by Lemma A.2, 1− pi(a

′, A) = 0 and
1−pi(a,A)
1−pi(a′, A) is undefined. Thus, the inequality cannot hold for all b ∈ A \ a, leading us to a

contradiction.

The following conclusion follows immediately from the last result.

Corollary A.3. For all i ∈ I and a, b ∈ X,

a ≻i b ⇐⇒ 1− pi(a, ab)

1− pi(b, ab)
≤ 1− µ̂i(a, ab)

1− µ̂i(b, ab)

A.3 Proof of Theorem 4.1

Let X ⊆ P(X) such that {a, b} ∈ X for all a, b ∈ X. To show that E : Ξ → Π is

injective, we need to show that for any p ∈ Π such that p ∈ R(E), E−1({p}) is a sin-

gleton. To that end, suppose E(ξ) = E(ξ̂) for ξ = ({≻i: i ∈ I} , N, {βi : i ∈ I}) , ξ̂ =(
{≻̂i : i ∈ I} , N̂ ,

{
β̂i : i ∈ I

})
∈ Ξ. We will show that ξ = ξ̂.

Before proving the main result, we prove an intermediate step that allows us to simplify

the problem.

Lemma A.3. Suppose p ∈ R(E). For all A ∈ X , pi(a, A) = 1 iff pi(a, ab) = 1 for all

b ∈ A \ {a}.

Proof. Let ξ = ({≻i: i ∈ I} , N, {βi : i ∈ I}) ∈ E−1(p) be parameters that represent the

ATP rationalizable dataset p. By Lemma A.1, pi(a, A) = 1 iff a = max≻j A for all

j ∈ N(i) iff a ≻j b for all b ∈ A \ {a} and j ∈ N(i). Again, by Lemma A.1, this is

equivalent to pi(a, ab) for all b ∈ A \ {a}.

For each i ∈ I, define R(i) as

R(i) := {j ∈ I : pi(a, A) = 1 ⇐⇒ pj(a, A) = 1, A ∈ X , a ∈ A}
≡ {j ∈ I : pi(a, ab) = 1 ⇐⇒ pj(a, ab) = 1, {a, b} ∈ X}

Lemma A.3 establishes these two definitions as equivalent.

Uniqueness of Clusters: By Corollary A.1, pi(a, ab) = 1 ⇐⇒ pj(a, ab) = 1∀j ∈ N(i).

Thus, j ∈ N(i) =⇒ j ∈ R(i). Now suppose j /∈ N(i). Since the clustering is homophilous,

there exists a pair of alternatives {a, b} such that a is preferred to b for everyone in one of

N(i) and N(j) but not for the other. Suppose w.l.o.g. that a ≻i′ b for all i
′ ∈ N(i). Then,
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there exists j′ ∈ N(j) such that b ≻j′ a. By Corollary A.1, pi(a, ab) = 1 and pj(a, ab) ̸= 1.

Thus, j /∈ R(i). The same argument can be applied if N(j) preferred a over b. Since

j /∈ N(i) =⇒ j /∈ R(i), R(i) ⊆ N(i), and N(i) = R(i) for all i ∈ I.

Since the same argument applies to N̂ , N(i) = R(i) = N̂(i) for all i ∈ I, which means

that N̂ = N .

Uniqueness of Preferences: SinceN(i) = N̂(i), µ̂N(i)(a, A) =
∑

j∈N(i) pi(a,A)

|N(i)| =

∑
j∈N̂(i) pi(a,A)

|N̂(i)|
=

µ̂N̂(i)(a, A) for all a ∈ A, A ∈ X . Then, by Corollary A.3,

a ≻i b ⇐⇒ 1− pi(a, ab)

1− pi(b, ab)
≤

1− µ̂N(i)(a, ab)

1− µ̂N(i)(b, ab)
=

1− µ̂N̂(i)(a, ab)

1− µ̂N̂(i)(b, ab)
⇐⇒ a≻̂ib

Thus, ≻i= ≻̂i for all i ∈ I.

Uniquess of βi: Since we assume that not everyone’s preferences within a cluster are

identical, for all i ∈ I, there exists j, j′ ∈ N(i) such that a ≻j′ b but b ≻j a, which

holds true iff a≻̂j′b and b≻̂ja. From Corollary A.1, pi(a, ab) ∈ (0, 1), which implies that

µ̂N(i)(a, ab) = µ̂N̂(i)(a, ab) ∈ (0, 1). Putting everything together, we have

pi(a, ab) = βi + (1− βi)µ̂N(i)(a, ab)

= β̂i + (1− β̂i)µ̂N̂(i)(a, ab)

=⇒ βi = 1− 1− pi(a, ab)

1− µ̂N(i)(a, ab)
=

1− pi(a, ab)

1− µ̂N̂(i)(a, ab)
= β̂i

Thus, βi = β̂i for all i ∈ I.

Thus, we have shown that ξ = ξ̂, and E−1(p) is a singleton for all p ∈ R(E). Thus, E is an

injective mapping.

A.4 Proof of Theorem 5.1

Necessity: Suppose p = E(ξ) is an ATP rationalizable joint random choice rule, where

ξ is a tuple of strict preference rankings {≻i: i ∈ I}, homophilous clustering N =

{N1, . . . , NS}, and immunity from influence coefficients {βi : i ∈ I}. Then p satisfies:

Peer Influence: From Corollary A.1, for any menu A, a ∈ A, pi(a, A) = 1 ⇐⇒ A is

top-agreeable for N(i) with top a ⇐⇒ pj(a, A) = 1, ∀j ∈ N(i). Then any j ∈ N(i)

is connected to i. Since |N(i)| > 1, there exists j ∈ N(i), j ̸= i, such that j and i are

connected.
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Since for each cluster N s, there exist i, j such that ≻i ̸=≻j , there exists a, b ∈ X such that

a ≻i b and b ≻j a. {a, b} ∈ X by supposition, so {a, b} is a menu in which individuals in

N s choose stochastically by Lemma A.1.

Stochastic IIA: We have established in the proof of Theorem 4.1 that for any ATP

rationalizable choice rule with homophilous clustering N = {N1, . . . , NS}, N(i) = R(i),

for any i ∈ I. Accordingly, µi(a,A) = µ̂i(a,A), for any A ∈ X . Consider any such menu

A. Given that ≻i is a ranking, there exists a unique a ∈ A such that a = max≻i A. By

Corollary A.2, it follows that 1−pi(a,A)
1−pi(b,A) ≤ 1−µ̂i(a,A)

1−µ̂i(b,A) ,∀b ∈ A \ a. Further, since µ̂i = µi, we

can conclude that ∃! a ∈ A such that 1−pi(a,A)
1−pi(b,A) ≤ 1−µi(a,A)

1−µi(b,A) ,∀b ∈ A \ a.

Next, consider any B ⊆ A with a ∈ B. Clearly a = max≻i B, and it follows from Corollary

A.2 and µ̂i = µi that
1−pi(a,B)
1−pi(b,B) ≤ 1−µi(a,B)

1−µi(b,B) , ∀b ∈ B \ a.

Menu Independence of Influence: Let A = {a1, . . . , aM} ∈ X be a menu in which i

chooses stochastically. Suppose a1 ≻i a2 ≻i · · · ≻i aM . Then Āi(a1) = ∅ and Āi(am) =

{a1, . . . , am−1}, for m = 2, . . . ,M . This is because by Corollary A.1 and the fact that

µi(.) = µ̂i(.), we know that for any a, b ∈ A, 1−pi(a,ab)
1−pi(b,ab)

≤ 1−µi(a,ab)
1−µi(b,ab)

iff a ≻i b. Since all

binary menus are contained in X , we can confirm the above claim. Accordingly, p∗i (a1, A) =

pi(a1, A), and

p∗i (am, A) =
pi(am, A)

1− pi(a1, A)− pi(a2, A)− · · · − pi(am−1, A)
, ∀m = 2, . . . ,M

Further, drawing on equation (3) that we established in the proof of Lemma A.2 and the

fact that µi(.) = µ̂i(.), it follows that for any such A,

1− pi(a1, A)

1− µi(a1, A)
=

1− pi(a2,A)
1−pi(a1,A)

1− µi(a2, A)
= · · · =

1− pi(aM ,A)
1−pi(a1,A)−pi(a2,A)−···−pi(aM−1,A)

1− µi(aM , A)
= 1− βi

i.e.,

1− pi(a1, A)

1− µi(a1, A)
=

1− p∗i (a1, A)

1− µi(a1, A)
=

1− p∗i (a2, A)

1− µi(a2, A)
= · · · = 1− p∗i (aM , A)

1− µi(aM , A)
= 1− βi < 1

Accordingly, for any A,B ∈ X in which i chooses stochastically, and any a ∈ A, b ∈ B, we

have
1− p∗i (a,A)

1− µi(a,A)
=

1− p∗i (b, B)

1− µi(b, B)
< 1

Sufficiency: Let p be a joint random choice rule that satisfies Peer Influence, stochastic

IIA, and menu independence of influence. To show that p is ATP rationalizable we need

to identify a collection of parameters ξ ∈ Ξ such that E(ξ) = p.

Defining the clustering: For any i ∈ I, define

N(i) = R(i) = {j ∈ I : i and j are connected}
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We want to show that this produces a valid partition. First, note that by the symmetry

in the definition, i ∈ R(j) ⇐⇒ j ∈ R(i). If j ∈ R(i), then pj′(a, A) = 1 ⇐⇒ pj(a, A) =

1 ⇐⇒ pi(a, A) = 1 ⇐⇒ pi′(a, A) = 1, for j′ ∈ R(j) and i′ ∈ R(i). That is, R(i) = R(j).

By Peer Influence, ∃j ̸= i s.t. j ∈ R(i), implying that |N(i)| > 1.

Finally, suppose R(i) ̸= R(j). By the above argument, j /∈ R(i). Furthermore, if j′ ∈
R(i) ∩ R(j), by the same argument, R(i) = R(j′) = R(j), which is a contradiction.

Trivially, ∪i∈IR(i) = I, which implies that {N(i)}i∈I is a valid clustering.

We next define preferences, and show at the end of the proof that this definition is consis-

tent with N being a homophilous clustering.

Definining preferences: Consider i ∈ I and define ≻i ⊆ X×X by: for any a, b ∈ X, a ̸=
b, a ≻i b if 1−pi(a,ab)

1−pi(b,ab)
≤ 1−µi(a,ab)

1−µi(b,ab)
. These preferences are well-defined because {a, b} ∈ X

for all a, b ∈ X. First, we establish that ≻i is total. This follows from stochastic IIA, since

for menu {a, b}, either 1−pi(a,ab)
1−pi(b,ab)

≤ 1−µi(a,ab)
1−µi(b,ab)

or 1−pi(b,ab)
1−pi(a,ab)

≤ 1−µi(b,ab)
1−µi(a,ab)

. Hence, we have

a ≻i b or b ≻i a. Since, by stochastic IIA, this inequality holds for a unique alternative, it

establishes that ≻i is asymmetric. Finally, to show that ≻i is transitive, let a ≻i b, b ≻i c

and consider A = {a, b, c}. A ∈ X because X contains all three-alternative menus. By

stochastic IIA, ∃ ! d ∈ A such that 1−pi(d,A)
1−pi(e,A) ≤

1−µi(d,A)
1−µi(e,A) and 1−pi(d, de)

1−pi(e, de)
≤ 1−µi(d, de)

1−µi(e, de)
, for all

e ∈ A \ d. By the way ≻i is defined, given that a ≻i b and b ≻i c, d ̸= b, c. Hence, d = a,

and consequently a ≻i c.

To ensure that for each cluster N s, there exists i, j s.t. ≻i ̸=≻j , note that there exists

some a, b such that i chooses stochastically in {a, b} by Peer Influence. We can say

this about all of N s for the same pair of alternatives by Peer Influence. Then, suppose
1−pi(a, ab)
1−µi(a, ab)

≤ 1−pi(b, ab)
1−µi(b, ab)

, which means that a ≻i b. By stochastic IIA, this is unique to either

a or b, so the inequality holds strictly for a menu in which i chooses stochastically. Since

all j ∈ N s also choose stochastically in the menu, suppose toward a contradiction that

a ≻j b for all j ∈ N s. Then
1−pj(a, ab)
1−µj(a, ab)

<
1−pj(b, ab)
1−µj(b, ab)

for all j ∈ N s. However, this implies

that
∑

j∈Ns 1−pj(a, ab)

1−µi(a, ab)
<

∑
j∈Ns 1−pj(b, ab)

1−µi(b, ab)
, which implies that |N s| < |N s|!

Defining β′
is: For any i ∈ I, define βi as follows by taking any menu A ∈ X in which i

chooses stochastically, and some a ∈ A:

βi =
p∗i (a,A)− µi(a,A)

1− µi(a,A)

Since 1 − βi =
1−p∗i (a,A)
1−µi(a,A) , menu independence of influence guarantees that the definition

of βi is independent of the choice of a and A, and that 1 − βi < 1, or βi > 0. By how

preferences are defined, b ≻i a iff b ∈ Āi(a), a, b ∈ A. Then, for a′ = max≻i A, since

Āi(a
′) = ∅, p∗i (a′, A) = pi(a

′, A)
1−

∑
a∈Āi(a

′) pi(a,A) = pi(a
′, A). Since i chooses stochastically in A,

pi(a
′, A) < 1, which implies βi =

pi(a
′, A)−µi(a

′, A)
1−µi(a′, A) < 1.
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Establishing the representation: Consider any i ∈ I. If i chooses non-stochastically

in A, then there exists a ∈ A such that pi(a, A) = 1 ⇐⇒ pj(a, A) = 1 for all j ∈ R(i) =

N(i). Then:

γi(a, A) =: βi + (1− βi)
1

|N(i)|
∑

j∈N(i)

pj(a, A)

= βi + 1− βi

= 1

= pi(a, A)

Note that 1−pi(a,A)
1−pi(b, A) = 0 = 1−µi(a,A)

1−µi(b, A) , for all b ∈ A \ a. By stochastic IIA, this implies

that 1−pi(a, ab)
1−pi(b, ab)

≤ 1−µi(a, ab)
1−µi(b, ab)

, for all b ∈ A \ a, which implies by the definition of ≻i that

a = max≻i A. Then, for all b ∈ A \ a

γi(b, A)
∏

c≻ib; c∈A
(1− γi(c, A)) = γi(b, A)(1− γi(a, A))

∏
c≻ib;c∈A\a

(1− γi(c, A))

= 0

= pi(b, A)

Hence, the representation holds for such A.

Now, consider A = {a1, ..., aM} in which i chooses stochastically, and assume wlog that

a1 ≻i a2 ≻i ... ≻i aM . By the definition of ≻i, Āi(a1) = ∅ and Āi(am) = {a1, ..., am−1}
for m ∈ {2, ..., M}. By menu independence of influence,

βi =
p∗i (a1, A)− µi(a1, A)

1− µi(a1, A)
=

pi(a1, A)− µi(a1, A)

1− µi(a1, A)
,

which implies

pi(a1, A) = βi + (1− βi)µi(a1, A) =: γi(a1, A)

Again applying menu independence of influence, we have that for any am,

p∗i (am, A)− µi(am, A)

1− µi(am, A)
= βi

=⇒ p∗i (am, A) = βi + (1− βi)µi(am, A) =: γi(am, A)

Accordingly,
pi(am, A)

1−
∑

k≤m−1 pi(ak, A)
= γi(am, A) (4)

Next, we establish by induction that 1 −
∑

k≤ℓ pi(ak, A) =
∏

k≤ℓ(1 − γi(ak, A)). To do

so, first, we know from above that 1 − pi(a1, A) = 1 − γi(a1, A). For the inductive step,
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assume that the equality we want to establish holds for ℓ− 1, i.e., 1−
∑

k≤ℓ−1 pi(ak, A) =∏
k≤ℓ−1(1− γi(ak, A)). Then use equation (4) to get

1− γi(aℓ, A) = 1− pi(aℓ, A)

1−
∑

k≤ℓ−1 pi(ak, A)

=
1−

∑
k≤ℓ pi(ak, A)

1−
∑

k≤ℓ−1 pi(ak, A)

=
1−

∑
k≤ℓ pi(ak, A)∏

k≤ℓ−1(1− γi(ak, A))

=⇒
∏
k≤ℓ

(1− γi(ak, A)) = 1−
∑
k≤ℓ

pi(ak, A)

So, this expression holds for ℓ, establishing the claim. Accordingly, equation (4) implies

that

pi(am, A) = γi(am, A)
∏

k≤m−1

(1− γi(ak, A)),

for all m ∈ {2, ..., M}. Hence, the representation holds for all A ∈ X , and i ∈ I.

Verifying that the clustering is homophilous: We know that N(i) = R(i) by the

definition of the clusters. Let N s and N t be two distinct clusters, with i ∈ N s and j ∈ N t.

Then, N s = R(i) and N t = R(j), with R(i) ̸= R(j). Since i and j are not connected,

there exists a menu A such that pi(a, A) = 1 or pj(a, A) = 1 for some a ∈ A, but not

both. Suppose w.l.o.g. that pi(a, A) = 1. Then, pi′(a, A) = 1 for all i′ ∈ N s = R(i). In

establishing the representation, we showed that pi′(a, A) = 1 implies a = max≻i′ A. We

now want to show that max≻j′ A ̸= a for some j′ ∈ R(j).

Choose j′ ∈ R(j) such that pj′(a, A) ≤ µj(a, A). Of course, such a j′ must exist. Fur-

thermore, pj(a, A) ̸= 1 =⇒ µj(a, A) < 1. If a = max≻j′ A, then based on the fact that

choice probabilities are according to the representation as shown above,

pj′(a, A) = γj′(a, A)

= βi + (1− βi)µj(a, A)

> µj(a, A)

However, this is not true by assumption, which implies that a ̸= max≻j′ A. Then, there

exists b ∈ A \ a such that b ≻j′ a, even as a ≻i′ b for all i
′ ∈ N s. Therefore, the homophily

condition is satisfied.

A.5 Unique identification without homophily

Example A.1. Suppose X = {a, b, c} is the set of alternatives and I = {1, 2, 3, 4} the

set of individuals in society. Let the profile of non-trivial random choice rules for these
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four individuals be given by pi(a, A) = 1 for A = {a, b}, {a, c}, {a, b, c}, i ∈ I, and for the

menu {b, c} choice probabilities given by the following:

p1 p2 p3 p4

b 1/2 3/5 2/5 1/2

c 31−
√
805

26 ≈
0.101

150−4
√
805

481 ≈
0.076

78−3
√
341

67 ≈
0.337

457−15
√
341

1139 ≈
0.158

If this choice data has to be consistent with the interactions underlying an ATP equilibrium,

then note first that for any menu where an individual chooses stochastically,

γi(a, A) = βi + (1− βi)µ̂i(a, A) > µ̂i(a, A),

and their best alternative in the menu is chosen with the attention probability. This

immediately tells us that {1, 4} cannot form a cluster because there is no such alternative

for 1 in the menu {b, c}, where her choice probability of choosing that alternative is greater

than the average choice probability of 1 and 4 of choosing that alternative. By the same

argument, it also follows that {1,2,3,4} cannot be part of a cluster. Note that neither

p1(b, bc) nor p1(c, bc) would be greater than the averages across the four individuals.

Now look at the possibility of {1, 3} forming a cluster. Since p1(b, bc) > p3(b, bc) and

p3(c, bc) > p1(c, bc), we can conclude that b ≻1 c and c ≻3 b if 1 and 3 are in the same

cluster. Since p3(b, bc) = 2/5 and p1(b, bc) = 1/2, the values for p1(c, bc) and p3(c, bc)

must satisfy the following equations. The first of them is

p3(c, bc)− 1
2 (p1(c, bc) + p3(c, bc))

1− 1
2(p1(c, bc) + p3(c, bc))

=

2
5(1−p3(c, bc))

− 9
10

11
20

The second is
2p1(c, bc)− 1

2 (p1(c, bc) + p3(c, bc))

1− 1
2 (p1(c, bc) + p3(c, bc))

=
1
2 − 9

20
11
20

=
1

11

The above equations come from rearranging the attention probability equations for each

of the alternatives to yield an expression for βi in terms of a menu A and some alternative

x ∈ A

βi =
γi(x, A)− µ̂i(x, A)

1− µ̂i(x, A)

Since this is equal for any x, y ∈ A, the above equations are obtained by equating two such

expressions for βi. It can then be verified that there is only one solution for this system

of equations such that (p1(c, bc), p3(c, bc)) ∈ [0, 1]2, which requires p1(c, bc) =
457−15

√
341

1139 .

However, this does not hold true for this profile, implying that 1 and 3 cannot be part of

the same cluster either. This leaves N = {{1, 2} , {3, 4}} as the only possible clustering.
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Consider preferences

1: a ≻1 c ≻1 b

2: a ≻2 b ≻2 c

3: a ≻3 c ≻3 b

4: a ≻4 b ≻4 c

Then note that for values of β1 = 847−29
√
805

477+45
√
805

≈ 0.014, β2 = 1/9, β3 = 869−36
√
341

495+66
√
341

≈ 0.119,

β4 = 1/11, it can be verified that pi(x, A) = γi(x, A)
∏

y≻ix
(1− γi(y, A)) with γi(x, A) =

βi+(1−βi)µ̂i(x, A). Then, this profile has an ATP representation, and by the uniqueness

of the clusters, is unique.

However, note that this representation does not satisfy the weak homophily condition,

as the set of top-agreeable menus for both clusters is {{a, b} , {a, c} , {a, b, c}}, with the

tops being the same. This shows that weak homophily is not a necessary restriction on

the representation for the unique identification of parameters.
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