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Abstract

Adding a portfolio choice problem to the consumption-saving model of Deaton (1991) or
Carroll (1992) shows that the optimal portfolio share of equity declines with wealth, even
in the presence of precautionary saving motives. Glaringly, the poor invest all their savings
in equity. Using an infinite-horizon consumption-saving problem, I examine the effects of
a positive covariance between permanent income growth and returns on equity (Viceira
2001) on optimal portfolio allocation. A positive covariance between the two decreases the
optimal portfolio share of equity at all wealth levels (Kimball’s (1991) temperance motive).
If the precautionary saving motive is a no-borrowing constraint, with a positive covariance
between permanent income growth and returns on equity beyond a threshold value that
depends only on the equity premium percentage and risk aversion (i) the optimal portfolio
share of equity increases with wealth, (ii) the poor invest all their wealth in the risk-free asset,
and (iii) the optimal portfolio share is lower than the Merton-Samuelson (no labor income)
share. If the precautionary saving motive is a positive probability of zero labor income,
however, (i) and (ii) do not hold true, though (iii) does. When calibrated to U.S. data,
neither precautionary saving motive can fully explain observed portfolio shares of equity
even with a very high covariance between permanent income growth and returns on equity.
The calibrated temperance motive may, however, explain the observed equity portfolio share
in conjunction with other popular explanations documented in the literature.
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1 Introduction

The standard buffer stock model (Deaton 1991, Carroll 1992) predicts that consumers engage in
precautionary saving either because of borrowing constraints or the possibility of unemployment.
Despite this, under a canonical formulation with independent shocks to income and returns on
equity, the model counterintuitively predicts that poor consumers should invest their entire
savings in equity, while wealthy consumers should save in the safe asset.1 The predictions of
lifetime portfolio optimization models by Merton (1969), Samuelson (1969) suggest that the
major component in the willingness to invest in the risky asset arises from a regular income
stream (Heaton & Lucas 1997).

Kimball (1991) showed that consumers may display a temperance motive to moderate exposure
to other risks when faced with income uncertainty, even if these risks are statistically indepen-
dent. Koo (1999) shows that an increase in the volatility of permanent income growth shocks
significantly amplifies the temperance effect, though transitory income shocks have negligible
influence. This does not change a key prediction of the model, however, that the poor should
invest all their savings in equity, and the portfolio share of equity declines with wealth. Fur-
thermore, given the equity premium and the volatility of returns on stock observed in the data
(Mehra & Prescott 1985), the baseline model suggests that even the wealthy should invest all
their savings in stocks.

One explanation for the modest portfolio share of equity observed in the data is that future
consumption is positively correlated with returns on equity. Constantinides et al. (2002) use
an overlapping generations (OLG) model to explore this idea. In their model, there are three
generations of individuals: the young, middle-aged, and old/retired. Retired individuals receive
a labor income of zero, which means that the future consumption of the middle-aged is highly
correlated with the returns on equity. On the other hand, the middle-aged face uncertain
wage income, implying that the future consumption of the young depends on more than just
the returns on equity, lowering their correlation. Their argument is that a positive correlation
implies that the realization of low marginal utility of consumption coincides with high returns,
and vice versa. Thus, the low portfolio share of equity is a consequence of the inability of the
young to participate in the stock market due to borrowing constraints. This paper departs
from their modeling assumptions by retaining income uncertainty and introducing correlations
between permanent income growth shocks and equity returns to correlate future consumption
and equity returns. A positive correlation between these shocks reduces the potential of equity
risk to serve as a hedge against fluctuations in future consumption due to permanent income
growth risk.

This paper primarily focuses on an infinitely-lived agent2 who consumes a single good and
maximizes the discounted sum of utility from consumption. The agent faces three risks: shocks
to the return on equity, permanent income growth, and transitory income. The model can
accommodate pairwise correlations between all three shocks, though the focus of this paper will
be on the case where permanent income shocks and equity returns are correlated, while transitory
1The one exception is that with zero income events, arbitrarily poor consumers invest the same fraction of their
savings in equity as the arbitrarily wealthy.

2The setup is well-suited to life-cycle modeling, but the insights derived in this paper are from the predictions of
the infinite-horizon model.
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income shocks are independent of both. The agent decides their consumption (therefore, saving)
and the portfolio share of equity in every period. The flexibility of the model in terms of the
distribution of the shocks allows us to establish that a correlation between transitory income
shocks and equity returns has a negligible effect on the portfolio share of equity for all agents
but those with near-zero savings.

There is ample justification in the literature to model permanent income growth as correlated
with equity returns while modeling transitory income shocks as independent of the two. Camp-
bell (1996) shows that there is a high correlation between the present value of human capital
and market returns, despite finding that the contemporaneous correlation between wage income
and stock returns is low. However, the source of this covariance in his model is due to a common
time-varying discount factor applied to both calculations. Baxter & Jermann (1997) also find
that the correlation between the returns to human capital and physical capital are high, even
as labor and capital income growth rates may not exhibit a high correlation. With indepen-
dent shocks across time, permanent income growth proportionally affects the expected present
discounted value of human capital, while the independent transitory shock allows for the low
correlation in actual labor income growth and returns on equity.

There have been papers that have studied correlations between labor income growth and equity
returns previously in a life-cycle setting. Bodie et al. (1992) modelled the labor supply decision
as endogenous, and made after the current return to equity has been determined. They show
that agents vary their labor supply ex-post to cushion themselves against greater risks taken
in their investment decisions. Subsequent papers study this relationship with an exogenous
income process and a positive relationship between income growth and equity returns. Benzoni
et al. (2007) explore a model with cointegrated labor income and stock market returns in a
continuous-time setting. Bagliano et al. (2014) on the other hand study a discrete-time model
with a permanent income shock that has both an aggregate and an idiosyncratic component,
and two risky assets. The closest paper to mine is by Viceira (2001), whose model is based
on a similar buffer-stock setting with correlations between permanent income growth and risky
asset returns. The difference here is that I focus on the problem of the infinitely-lived agent,
whose income is subject to both transitory and permanent income shocks, and who may face an
artificial borrowing constraint instead of possible spells of unemployment that otherwise serves
as the motive for precautionary saving. My focus, thus, is on portfolio choice across the wealth
distribution and around the target wealth, as opposed to over the life-cycle.3

The saving behavior of the agent who faces an artificial borrowing constraint is slightly different
as compared to that of the agent who faces a positive probability of zero income. While both
factors serve as precautionary saving motives, the consumer who faces artificial borrowing con-
straints tends to save very little at their target wealth and therefore invests none of their savings
in equity, which lends support to the well-studied argument that borrowing constraints among
the young, for instance, can cause reduced or non-participation in the stock market (Constan-
tinides et al. 2002, Haliassos & Hassapis 2002, Kogan et al. 2007, Jang & Park 2015, Harenberg
2018). I also artificially restrict the portfolio share of equity to between 0 and 1, which implies
that consumers cannot supplement their portfolio with debt-financed equity positions. Davis
et al. (2006) argue that borrowing costs can be a major deterrent against investing in equity
3Fagereng et al. (2020) point out that the composition of the portfolio even within the class of risky assets is
heterogeneous across the wealth distribution. This affects the rate of return on the risky component of the
portfolio, which, in turn, also affects portfolio choice.
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using loans, and it is beyond the scope of this paper to examine the differences in rates of return
and mechanisms available for consumers to borrow versus save.

The findings of this paper can be divided into three major strands. First, a positive correlation
between permanent income growth shocks and returns on equity does have a negative effect on
the portfolio share of equity of an agent with a moderate level of risk aversion (ρ = 4). When
faced with the no-borrowing constraint, this effect is most prominently observed among the
poor, who save very little and invest all of their savings in the risk-free asset. Proposition 1
also shows that this effect is indeed discontinuous in the covariance between permanent income
growth and equity return shocks. In fact, poor agents invest either all or none of their savings in
equity, and they invest none if the covariance between income growth and equity return exceeds
the equity premium times the inverse of the expected risky rate, scaled by the RRA parameter.
This effect is absent in the model where a positive zero-income probability serves as the motive
for precautionary saving instead of the borrowing constraint. This effect gradually disappears
in wealth, as the limiting portfolio share of equity approximately tends to the optimal portfolio
share in the models by Merton (1969), Samuelson (1969), which is independent of the correlation
between income and equity return shocks. Proposition 3 formalizes this result for both the cases
where the agent faces a no-borrowing constraint and a positive probability of zero-income.

Second, in a closely related effect, the optimal portfolio share of equity is increasing in wealth for
above-threshold levels of covariance between the permanent income growth and equity return
shocks. In particular, Proposition 2 shows that in the model with the no-borrowing constraint,
this effect is perfectly tied with the threshold level of covariance that makes the poor invest in
the risk-free asset. Numerical approximations and further analysis reveal why this conclusion
eludes the model with zero-income events. In particular, as the agent becomes arbitrarily poor,
the incidence of the zero-income event on utility differences becomes infinitely pronounced. Since
the zero-income event occurs independently of all other shocks, the agent accords highest weight
to sequences of zero-income shocks in the limit, causing portfolio choice behavior to revert to
that in the Merton-Samuelson model.

Third, with the artificial borrowing constraint, agents do not invest in equity or invest extremely
small proportions of their savings in it around the target level of wealth, while the threat of unem-
ployment better explains the portfolio share of equity around target levels of wealth conditional
on participation in the stock market. Though the model generates insightful predictions for an
equity premium set at 3 percent with the standard deviation of the logged shock to the return
set at 15 percent, calibrating the model to parameters implied by data on U.S. equity returns
as reported in Mehra (2006) necessitates an elevated risk aversion parameter of around 7 to
generate modest portfolio shares of equity around target wealth.

The covariance of permanent income growth and returns on equity is, of course, one among
multiple explanations posited to resolve the equity premium puzzle. A section of the literature
argues that habit-formation makes consumers more averse to the volatility in consumption across
time-periods induced by the risk on equity return (Constantinides 1990, Abel 1990, Detemple &
Zapatero 1991, Campbell & Cochrane 1999, Otrok et al. 2002). Another strand of the literature
focuses on the low participation rates in the stock market despite the large equity premium and
uses market frictions like fixed participation costs to explain increasing participation with age and
wealth (Cocco 2005, Gomes & Michaelides 2005, Alan 2006, Khorunzhina 2013, Fagereng et al.
2017). Modest portfolio shares of equity are also explained by heterogeneous and pessimistic
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beliefs about the returns on stocks. The evidence suggests that beliefs about the volatility
of returns on equity are exaggerated, and portfolio decisions are correlated with the reported
beliefs about the stock market (Dominitz & Manski 2007, Hurd et al. 2011, Amromin & Sharpe
2014, Ameriks et al. 2020, Velásquez-Giraldo 2024). Yet another explanation revolves around
heterogeneity in preferences or departures from expected utility (Guvenen 2009, Haliassos &
Bertaut 1995, Haliassos & Hassapis 2001, Routledge & Zin 2010, Schreindorfer 2020).4 Section
6 discusses how some of these explanations may tie in with the model in this paper to favorably
revise the predictions of the model without requiring a large coefficient of relative risk aversion.

Finally, numerically solving a model with three potentially correlated shocks presents its own
computational challenges. Numerical integration, particularly given a joint distribution of more
than two random variables, can be painfully slow. To that end, one of the contributions of this
paper is to provide a simple algorithm to discretize a multivariate lognormal distribution to
compute expectations in the Euler equation. This algorithm is detailed in Section 2.5.

The paper is structured as follows. Section 2 sets up the model and provides a preliminary
discussion of the solution to the model. Section 3 provides the main results and analysis con-
tained in the paper. Section 5 examines the implications of the calibrated temperance motive
for portfolio choice in the model. Section 6 provides a few comments and concludes.

2 Model

2.1 The basic problem

Consider the standard consumption-saving problem. The agent maximizes their discounted
lifetime utility from the consumption stream {Ct}Tt=0. The primary focus in this paper is on the
infinitely-lived agent, so we will let T = ∞ for the most part of the analysis. Their problem can
then be written as

max
{Ct}Tt=0

E0

T∑
t=0

βtu(Ct) (1)

subject to the period-wise constraints

Ct +At+1 =Wt + Yt

where At+1 is the total stock of assets at the end of period t, Wt the total monetary wealth at the
beginning of period t, and Yt is labor income in period t. Labor income is modeled exogenously,
where Yt is centered around an “expected” permanent income

Yt = θtPt (2)

where θt is a mean-one transitory shock. Permanent income, Pt, itself evolves according to the
process

Pt = ΓtPt−1ψt (3)
4See Barucci (2003) for a detailed exploration of the assumptions imposed under the standard rational paradigm
and the puzzles that stem from relaxing them.
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where Γt is the predictable component of the growth of permanent income, and ψt is a mean-one
shock. When considering the infinite-horizon problem, I will simplify the permanent income
prcess with Γt = Γ for all t.

The agent can also invest, in a perfectly divisible manner, between a risk-free and a risky (equity)
asset. If the consumer chooses to hold ςt+1 share of their savings in the risky asset in period t

(that is, their portfolio at the start of period t+1 contains ςt+1 share of the risky asset), wealth
in period t+ 1 is determined by

Wt+1 =

Rt+1︷ ︸︸ ︷
(R+ ςt+1(ℜt+1 − R))At+1 (4)

ℜt+1 = ℜηt+1 (5)

where ℜ > R is the expected return on the risky asset, ηt+1 is a mean-one shock, and Rt+1 is
the effective rate of return on assets stemming from the portfolio allocation decision ςt+1. The
choice of ςt+1 is restricted to the interval [0, 1], thus precluding debt-financed equity positions.
We can then use equation (4) rewrite the period budget constraint as

Wt+1 = Rt+1(Wt + Yt − Ct)

Allowing Mt =Wt + Yt to denote the total current level of monetary resources

Mt+1 = Rt+1(Mt − Ct) + Yt+1

2.2 Income and wealth uncertainty

I know describe the exact distribution followed by the shocks to income and wealth. There are,
particularly, three uncertainties of interest. ψ and η have been introduced before. The third
is ζ, of which θ is a function. The specifications of interest of this function will be detailed in
section 2.4. I model the shocks {(ψt, ηt, ζt)}t≥0 as independently and identically distributed
multivariate lognormal random variables. That is,

log(ψt, ηt, ζt) ∼ N (µ, Σ)

where

Σ =

 σ2ψ ωψ, η ωψ, ζ
ωη, ψ σ2η ωη, ζ
ωζ, ψ ωζ, η σ2ζ


µ =

−σ2ψ/2−σ2η/2
−σ2ζ/2


The marginal distributions of each of the shocks ensure that Et[ψ] = Et[η] = Et[ζ] = 1. Mean-
while, ωx, y captures the covariance of any two variables x and y among the three.
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2.3 Optimal behavior

In this paper, I restrict my attention to an agent with CRRA utility. That is, the agent’s period
utility from consumption is given by

u(Ct) =
C1−ρ
t

1− ρ

We can then write the problem in Bellman form:

Vt(Mt, Pt) = max
{Ct, ςt+1}

C1−ρ
t

1− ρ
+ β Et [Vt+1(Rt+1(Mt − Ct) + Yt+1, Pt+1)] (6)

Normalize all period t variables by the permanent income Pt (since At is determined in period
t − 1, it is normalized by Pt−1), and denote these new variables in lowercase (i.e. ct = Ct/Pt).
Letting Gt+1 = Γt+1ψt+1,

mt+1 =
Rt+1

Gt+1
(mt − ct) + θt+1

The Bellman formulation then becomes

vt(mt) = max
ct, ςt+1

c1−ρ

1− ρ
+ β E

[
(Gt+1)

1−ρvt+1

(
Rt+1

Gt+1
(mt − ct) + θt+1

)]
(7)

and the consumption Euler equation is then given by5

c−ρt = β Et
[
Rt+1(Gt+1ct+1)

−ρ] (8)

The optimality condition for the portfolio share, ςt+1 is slightly trickier, given that it is bounded
by [0, 1]. Finally, note that portfolio share is irrelevant when at+1 = 0, which means that we
can only pin it down for when at+1 ̸= 0. In that case, a choice of ςt+1 is optimal if6

Et [(ℜt+1 − R)(Gt+1ct+1)
−ρ] = 0 ςt+1 ∈ (0, 1)

Et [(ℜt+1 − R)(Gt+1ct+1)
−ρ] ≥ 0 ςt+1 = 1

Et [(ℜt+1 − R)(Gt+1ct+1)
−ρ] ≤ 0 ςt+1 = 0

(9)

5Use the envelope theorem to see that, u′(ct) = v′(mt), and

v′(mt) = β E
[
G −ρ
t+1Rt+1v

′(mt+1)
]

Then using the same conditions under optimality for period t+ 1, v′(mt+1) = u′(ct+1).
6A sufficient condition for this formulation of optimality is that v(mt) is single-peaked over possible values of
ςt+1 for every mt ∈ R+. Holding ct fixed, the problem of interest is

E
[
ψ1−ρ
t+1 vt+1(mt+1)

]
=

∫
ηt+1<

R
ℜ

ψ1−ρ
t+1 vt+1(mt+1)dµ+

∫
ηt+1>

R
ℜ

ψ1−ρ
t+1 vt+1(mt+1)dµ

where µ is the multivariate lognormal measure. The first integral is strictly increasing in ςt+1, while the second
integral is strictly decreasing in it. In the first integral, for every realization of the t+ 1 shocks, increasing ςt+1

leads to a decrease in future wealth. Since the value function is concave, the utility of wealth decreases at an
accelerating rate. By the same argument, the increase in the value of the second integral occurs at decelerating
rate. This means that the sum of the two integrals is single-peaked over ςt+1.
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Now see that whenever the optimal portfolio decision is to hold a mixture of both the safe and
the risky asset, the consumption Euler equation can be reduced to

c−ρt = β Et
[
(R+ ςt+1(ℜt+1 − R))(Gt+1ct+1)

−ρ]
= β

[
Et
[
R(Gt+1ct+1)

−ρ]+ ςt+1 Et
[
(ℜt+1 − R)(Gt+1ct+1)

−ρ]]
= βRΓ−ρ

t+1 Et
[
(ψt+1ct+1)

−ρ] (from (9))

2.4 Motives for precautionary saving

I extend the models by Deaton (1991) and Carroll (1992), along with their distinct approaches
to precautionary saving. The former model is based on the idea that the agent is unable to
borrow to smooth consumption, while the latter model imposes a zero-income risk, due to which
the agent chooses not to borrow. I examine both scenarios to see how portfolio choice is affected
by the joint distribution of income and equity return shocks. Going forward, I shall refer to the
former as the no-borrowing constraint (NBC) model, and the latter as the no-income risk (NIR)
model.

In the NBC model, the agent is faced with an artificial no-borrowing constraint,

At+1 ≥ 0

which implies that at+1 ≥ 0. Along with this, the transitory income shock θt+1 = ζt+1, which
means that θt+1 is simply the mean-one lognormal variable from the joint distribution described
previously. The agent with the NBC faces a kink in the consumption function at the point where
the borrowing constraint begins to bind. At this point, the agent simply consumes the totality
of their wealth. Lemma 1, echoing Deaton (1991), provides a useful characterization of this kink
that will appear in later results.

Lemma 1. For some m̃ > 0, the optimal consumption function for the NBC agent satisfies{
c(m) = m m ≤ m̃

c(m) < m m > m̃

Proof. Consider the problem of the NBC agent without the borrowing constraint for the current
period only. Under such conditions, c(m) > 0 for all m ≥ 0, as limc→0 u

′(c) = ∞ for ρ > 0.
Since c(m) −m is continuous, and limc→∞ u′(c) = 0, c(m) < m for m > m̃. We know m̃ > 0

because c(0) > 0. However, since c(m) − m is decreasing, c(m) = m for m = m̃. Since the
borrowing constraint binds, for m < m̃, c(m) = m.

In the NIR model, the agent faces no such constraint on borrowing, though they may potentially
encounter a zero-income event, i.e. their labor income may be zero in some periods. Particularly,
their transitory income is determined in each period by

θt+1 =

{
0 with probability ℘

ζt+1/(1− ℘) with probability 1− ℘
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where the resolution of the zero-income event is independent of any of the other shocks. In the
finite-horizon version of the model, consumers may face zero-income events till period T with
positive probability, which means that no-default condition at the end of life is enough to ensure
that consumers do not borrow.7 On the other hand, we can introduce a standard no-Ponzi
condition in the infinite horizon version of the model (which is the limit of the finite horizon
problem) to the same effect. As such, I numerically solve for the optimal policy functions only
over a domain of positive savings.

One of the possible contentions with modelling the zero-income event as independent of asset
return shocks could be that recessions are periods of layoffs, and therefore increasing unem-
ployment. It would then be natural for the probability of the zero-income event to be greater
conditional on lower returns on equity. While this is a valid line of reasoning, it is currently
beyond the scope of this paper to introduce this added layer of complexity. Another interpre-
tation that can be accorded to zero-income events are major unforeseen expenditures such as
on healthcare, which can be approximated as situations where the consumer’s net disposable
income to spend on the consumption good is near zero. In such situations, they must consume
using their savings.

2.5 Numerical solution

The first part of solving the model is to address the problem of efficiently computing expec-
tations of the marginal utilities of consumption decisions in future periods. Under the current
formulation, the shocks to income and returns are drawn independently in each time period,
which means that it is enough to discretize these shocks using their single-period distribution.
I use an equiprobable approximation of a truncated version (at 3 standard deviations of the
underlying standard normal) of these lognormal variables.8

Here are the steps involved in discretizing the distribution:

1. Choose a suitable truncation of the distribution in each dimension by choosing an interval
[pmin, pmax] ⊆ [0, 1]

2. Divide the interval given by
[
Φ−1(pmin), Φ

−1(pmax)
]

into n intervals of pmax−pmin
n proba-

bility each, I =
{[

Φ−1
(
(i−1)pmax+(n−i+1)pmin

n

)
, Φ−1

(
ipmax+(n−i)pmin

n

)]}n
i=1

3. Decompose the covariance matrix Σ using the Cholesky decomposition and obtain a matrix
L such that LLT = Σ

4. Then construct the random variables Y = µ+LZ, where Z ∼ N (0, I), to get Y ∼ N (µ, Σ)

5. Construct the set I3 and , and compute the conditional expectation of the vector of shocks

X = exp(Y ) in each set of I3, yielding the set of equiprobable atoms S =
{
(ψ, η, ζ)j

}n3

j=1

7Carroll & Shanker (2024) discuss that the NBC model can be interpreted as the limit of the NIR model as ℘
tends to 0.

8The code for this algorithm is available as part of a contribution I made to the HARK toolkit.
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Computing expectations of functions of these shocks can now be reduced to the following ap-
proximation

E [g(ψ, η, ζ)] ≈ n−3
n3∑
j=1

g(ψj , ηj , ζj)

Given a method to compute expectations over a multivariate lognormal distribution, the next
step is to compute the optimal decision rules. To do so, I sequentially apply the endogenous
grid method to a two-stage representation of the portfolio choice problem (stage 2) and the
consumption-saving problem (stage 1), and iteratively compute the infinite horizon policy rule
(Carroll 2006, 2024).9

3 Results

3.1 Revisiting the excess return equation

Appendix A.2 shows, similar to Mehra & Prescott’s (1985) original derivation, that the excess
return equation that determines the optimal portfolio allocation can be approximated as

Et [ℜt+1]− R ≈ ρcov(∆ lnCt+1, ℜt+1) (10)

Appendix A.4 further provides an approximation of the covariance of log consumption growth
and equity returns, which allows us to derive an approximation of the optimal equity share rule.
The subsequent sections will use this approximation to derive certain properties of the optimal
equity share rule.

As a preface to those results, we can make certain observations on the basis of equation (10).
First, since consumption growth is closely related to permanent income growth, a large increase
in the covariance between permanent income growth shocks and shocks to ℜt+1 would then
imply that the excess return on equity is less than the covariance between consumption growth
and the return on equity, scaled by the relative risk aversion coefficient. One thing to note here
is that this approximation depends solely on the covariance, and not the correlation between
permanent income growth and the risky rate of return. Proposition 1 shows that the optimal
equity share at low wealth levels depends solely on the covariance of income shocks and equity
returns, the average rates of return, and the relative risk aversion coefficient. The particularly
surprising element here, is that this is independent of the volatility of equity. Closely linked to
this is the observation is that optimal equity share is increasing in wealth, in contrast to the
decreasing share observed in the standard model. This is shown in Proposition 2.

The other aspect is how the optimal equity share behaves as the wealth to permanent income
ratio grows arbitrarily large. Proposition 3 shows that the optimal equity share converges to a
value independent of the covariance between income shocks and equity returns. In particular,
the optimal equity share converges to the Merton-Samuelson limit, which is the optimal equity
share in the absence of any income.10

9See Appendix B.1 for a detailed explanation of the computational algorithm.
10See Carroll (2024) for a discussion.

9



3.2 Baseline results

I start by looking at the baseline NBC model with uncorrelated shocks to income and asset
returns. I set the equity premium at 3 percent for this part of the analysis, and the standard
deviation of the logged shock to the equity return at 15 percent, i.e. ση = 0.15. I let all other
parameters be as in Table 1. Figure 1 shows that the optimal portfolio allocation ς(m) is 1 at
low values of m and decreases to an asymptotic value, as specified by the Merton-Samuelson
model, as m tends to infinity.

Figure 1. Optimal portfolio share with uncorrelated shocks

The analytic expression for the asymptotic portfolio share (the Merton-Samuelson share) shows
that ς∗ = limm→∞ ς(m) is increasing in the equity premium. Since the consumer is risk-averse,
increasing the volatility of the returns to equity will decrease its attractiveness, thus reducing the
optimal value of ς∗ upon an increase in ση. However, this is a largely counterintuitive prediction,
keeping in mind that those with low wealth-to-income ratios are predicted to invest their entire
income in equity. This is a result of the fact that the wealthy agent consumes largely out of
wealth, and their consumption exceeds their income, while the poorer agent consumes largely
out of income.

3.3 Optimal equity share at low wealth levels

The first result, stemming from the NBC model, is that optimal portfolio share is either 0 or 1
for low wealth levels.

Proposition 1. Under the no-borrowing constraint, for some m∗ > 0, the optimal portfolio rule
is given as

ς(m) =

0 if ωψ, η +
c′(1)
c(1) ωζ, η < ω̃

1 if ωψ, η +
c′(1)
c(1) ωζ, η > ω̃

for all m < m∗, where ω̃ ∼= ℜ−R
ρℜ .

Proof: See Appendix A.5
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The idea behind the result above is that for low levels of wealth, the NBC agent consumes
their entire wealth. As a result, changing the portfolio share does not affect the covariances
between future consumption growth and equity returns. For agents who save small but negligible
amounts of their wealth, the excess return on equity cannot make up for the imbalance caused by
large covariances between income shocks (whether permanent or transitory) and equity return
shocks. As such, low wealth NBC agents faced with such uncertainty invest their savings in
the risk-free asset. A key observation to make from the above result is that the threshold on
covariance between income shocks and equity returns for the NBC agent to exhibit such behavior
is independent (at least directly) of the volatility of returns on equity. The only role the volatility
of equity plays, then, is through the bounds it imposes on ωψ, η and ωζ, η.

The behavior described in the result above can be seen in the figure below.

Figure 2. Individuals with low wealth invest all their savings in the risk-free asset

(a) Transitory shock (b) Permanent shock

Figure 2 shows that agents with normalized wealth less than 1 (somewhere between 1 and 2 to
be precise), invest all their savings in the risk-free asset, irrespective of whether asset returns are
correlated with transitory or permanent income shocks. At low levels of savings, notice that θt+1

comprises the major component of mt+1, and high covariance between ηt+1 and ζt+1 implies that
low values of θt+1 go with low values of ηt+1. Since the marginal utility of future consumption
is high at low values of mt+1, which coincides with low values of ℜt+1, greater weight is placed
on instances with low asset returns when taking the expectations in equation (9). This lowers
the optimal portfolio share of the risky asset, in this case to 0. The other situation is when η is
correlated with ψ. Given the equation of mt+1, this actually reduces the variability in c(mt+1).
However, the positive correlation between η and ψ implies that when ℜt+1 −R is negative, Gt+1

is low, implying that G−ρ
t+1 is higher. Thus, the instances of negative return are weighted higher

in the excess return equation. Supposing that η and ψ are perfectly correlated, if ς = 1, then
mt+1 − θt+1 becomes a constant, and the higher weight accorded to instances with negative
return implies that the expectation becomes negative. On the other hand, if ς = 0, negative
values of ℜt+1−R are coupled with low values of Gt+1 and therefore higher mt+1, implying that
the lower marginal utility of normalized consumption under negative excess returns makes ς = 0

closer to optimality.

The second aspect is how the optimal portfolio share looks for slightly higher levels of wealth.
While the kink in the consumption function occurs at m < 1, agents consume almost all of their
monetary resources and save next to nothing upto m ≈ 1.5 (see Appendix B.2). As such, the
high MPC causes variability in future monetary resources to translate into variability in future
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consumption at an almost one-to-one level. After a certain threshold, however, the MPC sharply
falls, and the concavity of the consumption function ensures that it continues to fall. Moreover,
due to the diminishing marginal utility of consumption and the very low magnitude of the
marginal-marginal-utility of consumption, variability in mt+1 translates to very little variability
in c(mt+1)

−ρ. The analysis of the finite horizon model in section 3.5 highlights the particular
relevance of the MPC channel on this effect.

One additional change in the portfolio share rule observed in the case of covarying permanent
income shocks is that after the threshold value of wealth for ς(m) = 0 has passed, the optimal
portfolio share is not only low, but increasing in wealth. This is formally proved in Proposition
2. The result also shows that for a reasonable collection of values of the equity premium, risk-
free rate, and volatility of equity returns, the optimal portfolio share is less than the Merton-
Samuelson share for all wealth levels if and only if the covariance between permanent income
shocks and equity returns is greater than ω̃.

Proposition 2. Under the no-borrowing constraint, with ωζ, η = 0,

(i) the optimal portfolio share is increasing in wealth (m) if ωψ, η > σ2η

(ii) if ωψ, η < σ2η, it is increasing (decreasing) in wealth if and only if ωψ, η > ω̃ (ωψ, η < ω̃),
where ω̃ ∼= ℜ−R

ρℜ . Consequently, for plausible values of ℜ, R, and ση, the optimal portfolio
share is less than (greater than) the Merton-Samuelson share for all wealth levels if and
only if ωψ, η > ω̃ (ωψ, η < ω̃).

Proof: See Appendix A.6

Proposition 2 shows that if σψ ≥ ση, the optimal portfolio share is increasing in wealth under
two possible conditions: either ωψ, η exceeds σ2η or, if σ2η > ω̃ and ωψ, η > ω̃. If σψ < ση, then
ωψ, η < σ2η by definition. As such, portfolio share can be increasing in wealth if and only if
ω̃ < σησψ and ωψ, η > ω̃. The first observation to make is that this is the same threshold
by which the optimal portfolio share is 0 or 1 for low wealth levels in the NBC model. The
second, and perhaps more stark observation to make here, is that the optimal portfolio share is
less than the Merton-Samuelson share for all wealth levels if and only if ωψ, η > ω̃. Since the
Merton-Samuelson share represents the optimal level of investment in equity in the absence of
any income, the implication of the result is that when the covariance between shocks to income
growth and equity returns is high enough, agents exhibit greater caution than even when they
have no labor income.

Given these findings, the natural question to ask is whether this behavior prevails in the NIR
model. As seen in Figure 3, the optimal portfolio share for low wealth levels asymptotically
converges to the Merton-Samuelson share. This is in sharp contrast to the NBC model, where
the optimal portfolio allocation rule is monotonic in wealth.

A close examination of the Figure 3 and 2b shows that the optimal portfolio share of equity in
the NIR model is almost identical to that in the NBC model for ratios of wealth to permanent
income greater than 2. The divergence in the optimal portfolio share for low wealth levels from
the previous model can be attributed to the fact that the zero-income event, where θt+1 = 0, has
more extreme consequences for low wealth levels, and features prominently in the expectation
calculation in equation (9).
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Figure 3. Arbitrarily poor invest the Merton-Samuelson share

Since the excess return equation can be thought of as a weighted average of the excess return
on equity, we must observe the nature of events that are weighted the highest. Note that as
wealth becomes smaller, the marginal utility of consumption contingent on the realization of the
zero-income event becomes arbitrarily large. This is so, because future consumption tends to 0
as wealth tends to 0. As such, the instances with θt+1 = 0 are weighted the highest, and are
asymptotically accorded full weight in the excess return calculation. As current wealth tends to
0, next-period wealth also tends to 0 under the realization of the zero-income event. By the same
argument, optimal consumption and portfolio allocation behavior in the next period will reflect
an arbitrarily large weight accorded to the realization of the zero-income event in period t+2. By
repeated application of this argument, the optimal portfolio share should be akin to the model
with no labor income asymptotically. This is the description of the Merton-Samuelson model,
where consumption is purely a cake-eating problem. Thus, the optimal portfolio allocation
behavior also tends to the Merton-Samuelson share, as shown in Figure 3.

3.4 Optimal equity share at high wealth levels

The next question of interest is how the portfolio allocation rule behaves as the wealth-to-
permanent-income ratio grows arbitrarily large. The following proposition shows that the opti-
mal equity share, in both the NBC and NIR models, converges to the Merton-Samuelson share.

Proposition 3. In both the NBC and NIR models, the optimal portfolio share does not depend
on ωψ, η or ωζ, η as m→ ∞. Furthermore,

lim
m→∞

ς(m) ≈ ℜ− R

ρσ2η

Proof: See Appendix A.7

Proposition 3 shows that the optimal portfolio share is not only independent of the covariance
of the income process with returns on equity, but also tends to a value that is characteristic
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of the model in which there is no income. The explanation for this behavior can be found by
examining the optimal portfolio share condition, given by:

Et
[
(ℜt+1 − R)(Gt+1c(mt+1))

−ρ] = 0

where
mt+1 =

Rt+1

Gt+1
(mt − ct) + θt+1

Unquestionably, the covariances between the shocks affect the realized values of mt+1, and there-
fore the realizations of future consumption given by c(mt+1). However, asmt becomes arbitrarily
large, two things occur. First, the agent consumes primarily out of their wealth, as opposed to
their income. As such, the marginal utility of consumption becomes less sensitive to the real-
ization of the income shocks. After all, as wealth becomes arbitrarily large, a small deviation
in income produces an even smaller deviation in consumption, depending on the limiting MPC,
which is an insignificant percentage deviation in consumption. Since the approximate excess
return equation highlights that the optimal portfolio share is determined by equating the scaled
covariance of consumption growth and equity returns with the equity premium, changing the
income process does not affect the optimal portfolio share by much.

Second, as wealth grows large, the ratio of labor income and present discounted value of human
capital to assets tends to 0. As such, in the limit, irrespective of the covariances between the
income shocks and asset returns, the consumer decides their portfolio share as if income is not
a consideration. In other words, they behave like an individual who has no labor income, and
derives all income from the return on their investments (Carroll 2024).

Figure 4. Optimal portfolio share is unaffected by the income process

(a) NBC model (b) NIR model

Figure 4 shows the different optimal portfolio allocation rules for various values of ωψ, η. While
they all converge to the same limiting portfolio share in wealth, their functional forms are indeed
very dissimilar. Given the extremely large savings required to observe such convergence, which
is unlikely to be observed of any agent in the model, a change in the correlation between the
shocks would indeed affect the equity holdings of even the right-tail of the wealth distribution.
To do so, we would require a closer look at the savings behavior implied by the model, and the
natural distribution generated under optimal behavior. Section 3.6 elaborates further on how
optimal portfolio allocation behavior differs in the NBC and NIR models around the target level
of wealth.
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3.5 Next-to-last period in finite-horizon

Due to the convergence properties of the consumption function, we know that the optimal con-
sumption rule in the finite-horizon model for periods sufficiently away from the last period closely
approximate the infinite horizon consumption rule. As such, if the next period’s consumption
is similar to the infinite-horizon consumption, the optimal portfolio allocation rule should also
be similar to the infinite-horizon rule. On the other end of this discussion is the period that is
next to last.

The consumer in the last period knows that their optimization problem in the last period boils
down to maximizing utility from current-period consumption, which implies that cT (mT ) = mT .
The first useful feature of this is that it provides us with a consumption function for which we have
an analytical expression, which allows us to rewrite the optimal portfolio allocation condition
as:

ET−1

[
(ℜT − R)(RTaT + ΓψT θT )

−ρ] = 0

First, note that a permanent income growth and transitory income shock are equivalent in the
last period, so to analyze one is to analyze the other. While the coincidence of negative values
of ℜT − R and small values of GT still holds true, the MPC out of total monetary resources is a
constant 1. As a result, the only channel through which the portfolio choice problem differs at
high mT−1 as opposed to low is the marginal utility of future consumption. Figure B.2 shows
that the optimal portfolio allocation is nearly identical to that in the infinite horizon problem,
showing that the effect of correlations between permanent, as opposed to transitory, income
shocks and asset returns for moderate values of mT−1 is due to the low MPC out of transitory
income. However, it also reiterates the point that the limiting MPC implied by the consumption
function in the infinite-horizon problem does not affect the portfolio choice of the extremely
wealthy.

3.6 Behavior around target wealth

Till now, I have looked at the predictions of the model based on ad-hoc or asymptotic catego-
rizations of poor and wealthy. However, the ability of the model to explain portfolio allocation
decisions of individuals also depends on the saving behavior predicted by the model. Deaton
(1991) showed that under the satisfaction of a growth impatience condition, individuals save to
achieve a target wealth, m∗. Assuming that a wealth distribution of agents facing idiosyncratic
shocks would be centered around this target level, it is informative to examine how agents behave
at the target.

Figure 5a shows that at the target level of wealth, the optimal portfolio share accorded to equity
is actually 0. This is because, under the no-borrowing constraint, the target level of wealth
implies very little saving, or at+1 ≈ 0, where the optimal portfolio share was found to be 0. If
the consumer faces a negative shock to log transitory income, they still have some savings left to
allow them to remain at the target level of wealth. When a consumer faces a positive shock to log
transitory income, they begin participating in the stock market, and invest a small proportion
of their savings in equity. However, from the target wealth, with all savings in the risk-free
asset, a consumer’s normalized wealth in the next period cannot exceed 1.4 under the current
parameterization of the truncated distribution used to model log shocks to income. Then, a
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Figure 5. Optimal portfolio share at target wealth

(a) NBC model (b) NIR model

large proportion of agents in the wealth distribution should invest no more than 20 percent of
their savings in equity, which, of course, would be an extreme prediction.

A reason for these extreme findings is the binding no-borrowing constraint, and the consumer’s
heavy dependence on the transitory income for consumption. In fact, if the consumer experiences
a negative shock to log transitory income, their consumption would drastically fall, as the target
wealth lies just above the kink in the consumption function, and the MPC rises to 1 once the
no-borrowing constraint binds. This means that the agent will begin saving once again only
after they experience a positive transitory income shock, which prevents them from investing
in equity at low levels of savings. In light of this, it can be observed that though the optimal
portfolio share quickly rises to 1 in the case of a positive correlation between asset return and
transitory income shocks, the target wealth actually lies below this region, implying that for
levels of covariance high enough, the equity share at target wealth drops to 0.

Figure 5b shows the most significant way in which the zero-income event affects the distribu-
tion. As opposed to the case with the no-borrowing constraint, consumers hold a much greater
proportion of their permanent income in their savings. As such, they would want to hold some
of their savings in equity at the target level of wealth, which means that a distribution of agents
facing idiosyncratic shocks would also be centered around a reasonable portfolio share. However,
one thing to note is that the optimal portfolio share at the target level of wealth is decreasing in
wealth. This means that upon being close to the long-run savings target, the consumer would
increase their equity holdings if they are faced with a negative shock to transitory income and
decrease it if the shock is positive. Given the absence of any serial correlation in transitory
income shocks, this prediction is rather counterintuitive.

4 Distribution of wealth and portfolio share

The results in the previous section highlight the nuances of the how consumers in the model
optimally allocate their savings between the risk-free asset and equity. However, another infor-
mative facet of the model is the stationary distribution over wealth and portfolio share that the
behavior of agents gives rise to. The distribution of wealth and portfolio share is important in
that it provides a richer picture of how the precautionary saving motives of agents interact with
the portfolio choice problem.
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Given the form of the policy function, note that under either of the specifications, computing a
wealth distribution of agents is tantamount to obtaining a distribution over the portfolio share
of equity. To do so, we can simulate the trajectories of N agents (assuming a suitably large
N) over a substantial number of periods to approximate a stationary distribution of wealth and
portfolio shares. The first thing we need to do prior to this exercise is to formalize the manner
in which shocks are generated.

Firstly, returns on equity are common to all agents. The shocks to permanent income growth
and transitory income, however, can be modelled as idiosyncratic. Then, a consumer’s wealth
transition is given by

mi, t+1 =
R+ ς(mi, t)(ℜηt+1 − R)

Γψi, t+1
(mi, t − c(mi, t)) + θi, t+1

Note that the shocks to income experienced by all the individuals are independent of each
other only when the shocks to income are uncorrelated to the common shock, which is the
return on equity. However, the shocks to permanent and transitory income can be modelled as
conditionally independent upon the realization of the shock to the return on equity. Then, the
transition of wealth in the economy can be simulated by generating an asset return shock for each
period, and generating N values for the permanent income growth shock from the conditional
distribution of ψ and ζ, given the realization of η. In the NBC model, the generated values of ζ
are exactly the values of θ. In the NIR model, however, we can independently generate N draws
of a Bernoulli random variable with probability 1 − ℘ to determine which agents experience a
zero-income event, thereby determining the value of θ. Given the realization of the shocks, the
transition will be specified by mi, t+1 as defined above.

For the general statement of the problem, my simulation algorithm proceeds as follows. I first
generate a single draw from the marginal distribution of the return on equity. Then, given the
realized value of ln(η), I calculate the conditional distribution of the bivariate normal variables
(ln(ψ), ln(ζ)) as in Anderson (2003, p.34), and instantiate the derived bivariate lognormal. I
then use the draws from this distribution and the Bernoulli draws to determine ψi, t+1 and θi, t+1,
for each i. Finally, I calculate the transition of wealth for each agent, and repeat the process for
a large number of periods (T = 120) to approximate the stationary distribution of wealth and
incoming portfolio shares. That is, the distribution over portfolio shares of equity stemming
from previous period wealth, which reflects each agent’s beginning-of-period asset holdings. I
look at the baseline parameterization used in Section 3.

Figure 6 shows the distribution of wealth-to-permanent income among individuals in the NBC
and NIR models. As is already well understood, the stationary distribution of wealth is centered
around the target level of wealth in both models, though these savings targets are different,
due to the differences in how agents respond to borrowing constraints and zero-income events.
Given this stationary distribution, we can define a stationary distribution over portfolio shares
of equity, which is a function of the wealth-to-permanent income ratio for each individual. The
stationary distribution of portfolio shares in shown in Figure 7. Both distributions are radically
different. Due to the nature of the optimal portfolio share rule in the NBC model, there is a
high rate of clustering around 0. That is, many agents do not participate in the stock market,
so long as they do not face a large transitory income shock in the current period. In the NIR
model, however, the distribution is more spread out, reflecting the smoothness of the portfolio
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Figure 6. Stationary wealth distribution in the NBC and NIR models

(a) NBC model (b) NIR model

share rule around the target level of wealth. The joint distribution of wealth and equity portfolio

Figure 7. Stationary distribution of portfolio shares in the NBC and NIR models

(a) NBC model (b) NIR model

share going into the next period is rather trivial, as it is concentrated along the optimal portfolio
share rule, weighted according to the stationary distribution of wealth. On the other hand, there
is merit in examining the joint distribution of current portfolio holdings (which are determined
by the previous period’s wealth), and current wealth. This distribution is shown in Figure
8. As predictable, this distribution exhibits the relationship between wealth and portfolio share
according to the optimal portfolio share rule around target wealth, but also reflects the dispersion
arising from idiosyncratic shocks in the next period. Furthermore, the distribution in the NIR
model also reflects the small proportion of agents who are faced with zero-income events, who,
despite their lower wealth, invest similar amounts in equity as those with higher wealth.

5 Calibration

While the previous sections distill the primary insights from the model with an artificial pa-
rameterization of asset returns, both in terms of the equity premium and the variability of the
returns from equity, I now look at how the model responds to being calibrated to parameters
documented in the literature about U.S. data. Since the primary determinant of optimal portfo-
lio allocation in the model that is of interest to us is the covariance between permanent income
shocks and shocks to the return on the risky asset (ωψ, η), I vary this parameter while holding
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Figure 8. Stationary joint distribution of wealth and portfolio shares in the NBC and NIR
models

(a) NBC model (b) NIR model

the others constant at documented values. To begin, Mehra & Prescott (1985) estimate that
the historical real rate of return on equity in the U.S. is 7.67 percent, while the return on a
relatively risk-free securities over the same period was 1.31 percent.11 Furthermore, the Sharpe
ratio for these assets was calculated to be 0.37. Since η is a mean-one lognormal, we know that:

σ2η = log

((
ℜ− R

0.37ℜ

)2

+ 1

)

I follow Carroll (1992) and set the standard deviations of logged permanent and transitory
income shocks to 10 percent. Following the same paper, I set permanent income growth at 3
percent and the probability of the zero income event as 0.5 percent. I also set β = 0.93 and
ωζ, ψ = ωζ, η = 0. I then solve the model using a baseline of ρ = 4 for different values of ωψ, η.
The full choice of parameters is then given in Table 1.

Table 1. Parameters used to solve the model

Parameter Value Source

ρ 4
β 0.93
Γ 1.03 Carroll (1992)
ℜ 1.0767 Mehra (2006)
R 1.0131 Mehra (2006)
σ2η 0.011 Mehra (2006)
σ2ψ 0.01 Carroll (1992)
σ2ζ 0.01 Carroll (1992)
℘ 0.005 Carroll (1992)

The first thing we can see under this new parameterization is that even with highly collinear
shocks (corr(log η, logψ) ≈ 1), the optimal portfolio share is 1. This is because despite the high
11The original data was later updated till 2005, which forms the source of these estimates. See Mehra (2006) for

details.
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covariance, the excess return of more than 6 percent and the relatively low volatility, with a
standard deviation of under 10.5 percent for the logged shock to returns, makes it difficult to
justify holding the risk-free asset. In fact, Figure 9 shows that the equity share of portfolio falls
to realistic levels under the no-borrowing constraint only when ρ is as large as 12. This number
is close to the benchmark by Schreindorfer (2020), whose model incorporates disappointment
averse preferences and has agents exhibit levels of relative risk aversion of close to 10.

Figure 9. U.S. figures requires extremely high RRA to explain the equity premium

(a) ρ = 4 (b) ρ = 12

This result is well-contextualized in light of Proposition 1, which characterizes the threshold on
covariance between income and asset returns that would make the poor invest in the risk-free
asset. Given the values of ση and σψ in Table 1, ωη, ψ is bounded above by a little over 0.01.
Even assuming nearly perfect correlation between equity returns and permanent income growth,
ω̃, as defined in Proposition 1, needs an RRA (ρ) of approximately 6 to make the poor invest
in the risk-free asset. However, despite this high RRA, the portfolio share quickly converges
toward the Merton-Samuelson bound, which is relatively close to 1.

The limiting value of the portfolio share of equity is not very different under the model with
zero-income events. In fact, the limiting portfolio share of equity is identical between the two
models. What changes is how we can explain the equity share around the target wealth.

Figure 10. Portfolio share around target wealth under the no-borrowing constraint and zero-
income events

(a) ρ = 7, NBC (b) ρ = 7.5, Zero Income Events

Figure 10 shows that for ρ = 7.5, optimal portfolio share around the target wealth actually falls
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to around 30%. Meanwhile, in the model with the no-borrowing constraint, the equity share
at target is 0. This is so, even as the limiting values of share holdings under this parameter-
ization are really high. As such, while the model with zero income events makes for a better
approximation around the target wealth, it performs identically to the model with the borrowing
constraint for high mt and worse by predicting that the poor will invest close to the share limit
in equity, particularly as mt → 0. In any case, a value for ρ greater than 7 does not produce
suitable implications for consumption-savings behavior.

These findings show that while these models do not explain the equity premium perfectly, the
introduction of the correlation between permanent income shocks and asset returns has produced
a significant improvement in how optimal portfolio decisions fit the data at relatively reasonable
levels of risk aversion. Furthermore, while the model with the no-borrowing constraint accurately
prohibits the extremely poor from investing in equity, the introduction of the zero income events
ensures that consumers engage in precautionary saving and invest some of their fairly substantial
savings in equity as a result.

6 Discussion

Section 5 shows that while a positive covariance between permanent income growth shocks and
equity return shocks (ωψ, η) does explain the preference for saving in the safe asset to some
extent, the expected returns on equity (ℜ) in the data are too high at relatively low volatility
(ση). As such, even with a very high correlation between permanent income growth shocks
and equity returns, we require unrealistically high levels of relative risk aversion to explain the
portfolio allocation observed in the data. A particular problem area is that the equity share
limit for wealthy individuals is extremely high, at close to 80 percent, even with ρ = 7. While
portfolio shares dip to reasonable numbers with zero income events around the target wealth, the
model cannot explain the portfolio choice decisions of consumers outside a small neighborhood
of the target wealth in the distribution and non-participation in the stock market.

One approach used to address this problem is to incorporate non-expected utility preferences.
Haliassos & Hassapis (2001) examine how various models of decision-making under risk improve
predictions on equity holdings. While they conclude that changing preferences alone is not suf-
ficient to account for the equity premium, they show that Kreps & Porteus (1978) preferences
and, to a greater extent, Rank-Dependent Utility (Quiggin 1982) provide more realistic pre-
dictions on portfolio composition. Similarly, Schreindorfer (2020) shows that disappointment
averse preferences (Gul 1991, Routledge & Zin 2010) can help explain the equity premium at
a much lower level of relative risk aversion than with expected utility preferences under their
model. However, the risk aversion coefficient necessary with expected utility preferences in their
model is 34, meaning that despite the marked improvement, the new risk aversion coefficient is
as high as 10.

Another explanation for the lower portfolio share of equity in the data than predicted in the
model is pessimism and heterogeneity in beliefs about stock returns. Haliassos & Bertaut (1995)
argue that in addition to correlations between labor income and asset returns and departures
from expected utility, factors such as informational frictions provide a good explanation for the
equity premium. While they note that a lack of knowledge about the stock market constrained
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participation, Dominitz & Manski (2007) find that agents also hold exaggerated beliefs about the
possibility of negative nominal stock returns. Velásquez-Giraldo (2024) incorporates estimated
beliefs from survey data into a life-cycle model and finds that stock market participation and
conditional equity portfolio share can be explained by heterogeneous beliefs with a high average
belief about the volatility of returns to equity. For consumers who believe that stock returns
are extremely volatile, a high, or even moderate correlation between permanent income shocks
and asset returns should ensure that they do not participate in the stock market, whereas the
conditional distribution over equity portfolio share would then be determined by those who
believe the stock market is not as volatile, though possibly more than actually observed in the
data.

As far as non-participation in the stock market is concerned, minimum investment limits and
fixed costs for participation have also been studied as probable obstacles. In the current model,
with the parameterization as in section 5 stock market non-participation is observed at target
wealth solely due to the no-borrowing constraint, and cannot be seen with the zero income
event. However, a fixed participation cost would preclude consumers with very little wealth
from investing their savings in equity, thereby generating a non-participation effect among low-
wealth consumers. One limitation to this approach is that it cannot explain non-participation
across wealth levels. Andersen & Nielsen (2011), Briggs et al. (2021) show that consumers who
experience windfall gains do not see significantly higher participation rates, and that some of
them even liquidate inheritances received in the form of stock.12

A Mathematical Appendix

A.1 Approximation of expectations

I recurrently use the following approximation of the expectation of a function of a random
variable X around its expectation, µX .

f(X) ≈ f(µX) + f ′(µX)(X − µX) +
1

2
f ′′(µX)(X − µX)

2

E [f(X)] ≈ f(µX) +
1

2
f ′′(µX) var(X)

Accordingly, we can compute the expectation of a function of a random vector X = (X1, ..., Xk)

around its expectation vector µX = (µX, 1, ..., µX, k)

f(X) ≈ f(µX) + (∇f)(µX) · (X − µX) +
1

2
tr
(
H(f)(µX)(X − µX)(X − µX)

′)
E [f(X)] ≈ f(µX) +

1

2
tr(H(f)(µX)ΣX)

= f(µX) +
1

2

k∑
i=1

k∑
j=1

∂2f(X)

∂Xi∂Xj

∣∣∣∣∣
µX

cov(Xi, Xj)

12Note that individuals who experience windfall gains do not experience an increase in permanent labor income,
which means that their normalized wealth must also increase. Thus, variance in wealth due to the variance in
permanent income alone does not capture such individuals.
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where ΣX is the covariance matrix of X, (∇f)(µX) is the gradient of f , and H(f)(µX) is the
Hessian matrix of f , both evaluated at µX .

A.2 Approximating the excess return equation

We want to approximate the excess return equation

Et
[
(ℜt+1 − R)(Gt+1ct+1)

−ρ] = 0

Note that Gt+1ct+1 = Ct+1. We can then divide both sides of the equation by Ct+1 and get

Et

[
(ℜt+1 − R)

(
Ct+1

Ct

)−ρ
]
= 0

The first approximation we can apply is that

Ct+1

Ct
≈ 1 + ∆ lnCt+1

for small enough values of ∆ lnCt+1. Then observe that (1 + x)α ≈ 1 + αx for small x. Put
together,

Et [(ℜt+1 − R) (1− ρ∆ lnCt+1)] ≈ 0

We can then expand this to

Et [(ℜt+1 − R) (1− ρ∆ lnCt+1)] = Et [(ℜt+1 − R)]Et [1− ρ∆ lnCt+1]− cov(ρ∆ lnCt+1, ℜt+1)

Et [ℜt+1]− R ≈ ρ cov(∆ lnCt+1, ℜt+1)

1− ρEt [∆ lnCt+1]

Around steady state values of normalized consumption, Et∆ lnCt+1 ≈ Et∆ lnPt+1 = γ−σ2
ψ

2 ≈ 0,
where γ = lnΓ. This holds true more generally as well. Then

Et [ℜt+1]− R ≈ ρ cov(∆ lnCt+1, ℜt+1)
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A.3 Approximations of covariances

We want to approximate the covariances of functions of two random variables X and Y around
their expectations µX and µY . To do so:

cov(f(X), g(Y )) = E [f(X)g(Y )]− E [f(X)]E [g(Y )]

E [f(X)g(Y )] ≈ f(µX)g(µY ) +
1

2

[
f ′′(µX)g(µY ) var(X) + f(µX)g

′′(µY ) var(Y )
]

+ f ′(µX)g
′(µY ) cov(X, Y )

E [f(X)]E [g(Y )] ≈ f(µX)g(µY ) +
1

2

[
f ′′(µX)g(µY ) var(X) + f(µX)g

′′(µY ) var(Y )
]

+
1

4
f ′′(µX)g

′′(µY ) var(X) var(Y )

cov(f(X), g(Y )) ≈ f ′(µX)g
′(µY ) cov(X, Y )− 1

4
f ′′(µX)g

′′(µY ) var(X) var(Y )

Using a similar application of the expectations formulae, it can be observed that

E [f(X1, X2, X3)g(X3)] ≈ f(µX)g(µX, 3) +
1

2
g(µX, 3)

3∑
i=1

3∑
j=1

cov(Xi, Xj)
∂2f(X)

∂Xi∂Xj

∣∣∣∣∣
µX

+ g′(µX, 3)

3∑
i=1

∂f(X)

∂Xi

∣∣∣∣
µX

cov(Xi, X3)

+
1

2
g′′(µX, 3)f(µX) var(X3)

Similarly,

E [f(X)]E [g(X3)] ≈ f(µX)g(µX, 3) +
1

2
g(µX, 3)

3∑
i=1

3∑
j=1

cov(Xi, Xj)
∂2f(X)

∂Xi∂Xj

∣∣∣∣∣
µX

+
1

4
g′′(µX, 3) var(X3)

3∑
i=1

3∑
j=1

∂2f(X)

∂Xi∂Xj

∣∣∣∣∣
µX

+
1

2
f(µX) var(X3)g

′′(µX, 3)

Then

cov(f(X), g(X3)) ≈ g′(µX, 3)
3∑
i=1

∂f(X)

∂Xi

∣∣∣∣
µX

cov(Xi, X3)

− 1

4
g′′(µX, 3) var(X3)

3∑
i=1

3∑
j=1

∂2f(X)

∂Xi∂Xj

∣∣∣∣∣
µX
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A.4 Approximation of covariance of consumption and equity returns

We want to approximate the expression

cov(∆ lnCt+1, ℜt+1)

which features in the approximate excess return equation. We can start by noting that Ct is a
known quantity, so cov(∆ lnCt+1, ℜt+1) = cov(lnCt+1, ℜt+1). Thereafter

Ct+1 = Γψt+1Ptct+1

lnCt+1 = lnΓ + lnPt + lnψt+1 + ln ct+1

cov(lnCt+1, ℜt+1) = ℜ [ cov(lnψt+1, ηt+1) + cov(ln ct+1, ηt+1)]

Note that E [lnψt+1] = −σ2
ψ

2 and E [ln ηt+1] = −σ2
η

2 . We can then approximate

cov(lnψt+1, ηt+1) = cov(lnψt+1, exp(ln ηt+1))

≈ exp

(
−
σ2η
2

)
cov(lnψt+1, ln ηt+1)

≈

(
1−

σ2η
2

)
ωψ, η

≈ ωψ, η

Now observe that with mt known and ct = c(mt) subsequently determined, ct+1 can be written
as ĉ(ψt+1, θt+1, ηt+1), where

ĉ(ψt+1, θt+1, ηt+1) ≡ c

(
R+ ς(ℜηt+1 − R)

Γψt+1
(mt − ct) + θt+1

)
Define m̄ as

m̄ =
R+ ς(ℜ− R)

Γ
(mt − ct) + 1

Then, setting f ≡ ln ◦ĉ and g as the identity function, we can approximate

cov(ln ◦ĉ(ψt+1, θt+1, ηt+1), ηt+1) ≈ var(ηt+1)
c′(m̄)

c(m̄)

ςℜ
Γ

(mt − ct)

− cov(ψt+1, ηt+1)
c′(m̄)

c(m̄)

R+ ς(ℜ− R)

Γ
(mt − ct)

+ cov(θt+1, ηt+1)
c′(m̄)

c(m̄)

Now we can see that

cov
(
eX , eY

)
≈ exp

(
−
σ2X + σ2Y

2

)
cov(X, Y )− 1

4
σ2Xσ

2
Y exp

(
−
σ2X + σ2Y

2

)
≈ cov(X, Y ) (for small σX and σY )

25



For the NBC model, θt+1 = ζt+1, so cov(θt+1, ηt+1) ≈ ωζ, η. However, even in the NIR model,
note that E [θt+1] and E [ηt+1] are unchanged, while

E [θt+1ηt+1] = ℘ · 0 + (1− ℘)
E [ζt+1ηt+1]

1− ℘
= E [ζt+1ηt+1]

Thus,

cov(∆ lnCt+1, ℜt+1) ≈ ℜ

(
ωψ, η +

c′(m̄)

c(m̄)

(
(mt − ct)

(
ςℜσ2η − (R+ ς(ℜ− R))ωψ, η

Γ

)
+ ωζ, η

))

A.5 Proof of Proposition 1

Note from Appendix A.4, that

ρ cov(ln∆Ct+1, ℜt+1) ≈ ρℜ

(
ωψ, η +

c′(m̄)

c(m̄)

(
(mt − ct)

(
ςℜσ2η − (R+ ς(ℜ− R))ωψ, η

Γ

)
+ ωζ, η

))

By Lemma 1, there exists m̃ > 0 such that c(m) = m for m ≤ m̃. For such m,

ρ cov(ln∆Ct+1, ℜt+1) ≈ ρℜ
(
ωψ, η +

c′(1)

c(1)
ωζ, η

)
as at+1 = 0 and m̄ = E [θt+1] = 1. Since ρ cov(∆ lnCt+1, ℜt+1) is continuous in m,13 if
ρ cov(ln∆Ct+1, ℜt+1) > ℜ − R for m < m̃, it is also true for m < m̃ + ϵ, for ϵ > 0 and
any ς ∈ [0, 1]. Thus, under the conditions for optimality, ς(m) = 0 for all such m. Likewise,
ς(m) = 1 for m < m̃ + ϵ if ρ cov(ln∆Ct+1, ℜt+1) < ℜ − R for m′ < m̃. Defining m∗ as the
supremum of such m, we have the binary policy rule, as in the result. The only thing left to
prove is that ω̃ = ℜ−R

ρℜ . That is obvious upon dividing both sides of the excess return equation
by ρℜ.

A.6 Proof of Proposition 2

Note from Appendix A.4, the excess return equation is approximated as

ℜ− R ≈ ρℜ

(
ωψ, η +

c′(m̄)

c(m̄)

(
(mt − ct)

(
ςℜσ2η − (R+ ς(ℜ− R))ωψ, η

Γ

)
+ ωζ, η

))

Note,

m̄′(m) =
R+ ς(ℜ− R)

Γ
> 0

and

d

dm

c′(m̄)(m− c(m))

c(m̄)
=
c(m̄)(c′′(m̄)(m− c(m))m̄′(m) + c′(m̄)(1− c′(m)))− c′(m̄)2(m− c(m))m̄′(m)

c(m̄)2

13Carroll & Shanker (2024) show that c is twice continuously differentiable in m.
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By the concavity of c, the above derivative is negative. Supposing that ωζ, η = 0,14 we only care
about the positivity or negativity of the term

ςℜσ2η − (R+ ς(ℜ− R))ωψ, η

This term is positive if and only if

ωψ, η <
ςℜσ2η

R+ ς(ℜ− R)

≤ σ2η

Therefore, if ωψ, η ≥ σ2η, this term is non-positive, and cov(ln∆Ct+1, ℜt+1) is increasing in
wealth. As such, the optimal portfolio share is decreasing in wealth. On the other hand, if
ωψ, η < σ2η, the term is positive when ς = 1, and negative when ς = 0. Thus, there exists a
threshold ς such that the optimal portfolio share is increasing in wealth below this portfolio
share. This threshold is given by

ς <
Rωψ, η

ℜσ2η − (ℜ− R)ωψ, η

Now, suppose ωψ, η = ω̃ = ℜ−R
ρℜ . Then

Rℜ−R
ρℜ

ℜσ2η −
(ℜ−R)2

ρℜ

=
R(ℜ− R)

ρℜ2σ2η − (ℜ− R)2

Since the threshold value is increasing in ωψ, η, the optimal portfolio share is increasing in
wealth for ωψ, η > ω̃ as long it is below this share share. Likewise, the optimal portfolio share is
decreasing in wealth for ωψ, η < ω̃ as long as it is above this share. As such, we must only show
that in each case, the optimal portfolio share lies on either side of this threshold.

Rearranging the excess return equation, the optimal portfolio rule can be written as

ς(m) ≈ Γ

ℜσ2η − (ℜ− R)ωψ, η

(
c(m̄)

c′(m̄) (m− c(m))

(
ℜ− R

ρℜ
− ωψ, η

)
−

Rωψ, η
Γ

)
First, note that differentiating the right hand side w.r.t ωψ, η reveals that it is decreasing in ωψ, η.
Thus, the optimal portfolio share is decreasing in ωψ, η. Now, note that the right hand side is
decreasing in ωψ, η,15 so ς is decreasing in ωψ, η. Note, then, for ωψ, η = ω̃,

ς(m) ≈ R(ℜ− R)

ρℜ2σ2η − (ℜ− R)2

Therefore, ς(m) is greater than the threshold share if ωψ, η < ω̃, and lower otherwise. As such,
ς(m) is increasing in wealth for ωψ, η > ω̃, and decreasing otherwise. Note that for plausible
values of ℜ, R, and ση, (ℜ2 − 1)ρσ2η − (ℜ−R)2 ≈ 0 and R ≈ 1. Thus, the threshold value of ς is

14This covariance becomes inconsequential with wealth, as c′(m̄)
c(m̄)

sharply falls
15Also see that cov(lnCt+1, ℜt+1) is increasing in ωψ, η, so ς is decreasing in ωψ, η.
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approximately

ς(m) =
R(ℜ− R)

ρℜ2σ2η − (ℜ− R)2

=
R(ℜ− R)

ρσ2η + (ℜ2 − 1)ρσ2η − (ℜ− R)2

≈ ℜ− R

ρσ2η

Note that this is the Merton-Samuelson share.

A.7 Proof of Proposition 3

Note from Appendix A.4, that

ρ cov(ln∆Ct+1, ℜt+1) ≈ ρℜ

(
ωψ, η +

c′(m̄)

c(m̄)

(
(mt − ct)

(
ςℜσ2η − (R+ ς(ℜ− R))ωψ, η

Γ

)
+ ωζ, η

))

Since the right hand side is differentiable in m, we can determine the approximate limit of the
optimal portfolio share from the limit of the right hand side as m approaches infinity. Carroll
& Shanker (2024) show that c′(m) → κ ≥ 0 as m→ ∞, where κ > 0 subject to the satisfaction
of a growth impatience condition. Thus,

lim
m→∞

c′(m̄)(m− c(m))

c(m̄)
= lim

m→∞

c′(m̄)m−c(m)
m

c(m̄)
m

lim
m→∞

m− c(m)

m
= lim

m→∞
1− c′(m)

= 1− κ

lim
m→∞

c(m̄)

m
= lim

m→∞
c′(m̄)m̄′(m)

=⇒ lim
m→∞

c′(m̄)(m− c(m))

c(m̄)
= lim

m→∞

c′(m̄)(1− c′(m̄))

c′(m̄)m̄′(m)

= lim
m→∞

(1− c′(m̄))

m̄′(m)

=
Γ

R+ ς(ℜ− R)

Note that limm→∞
c′(m̄)
c(m̄) = 0, so the limit of the covariance term is

lim
m→∞

ρ cov(ln∆Ct+1, ℜt+1) ≈ ρℜ
ςℜσ2η

R+ ς(ℜ− R)
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Substituting this back into the excess return equation,

ℜ− R ≈
ρℜ2σ2ης

R+ ς(ℜ− R)

R(ℜ− R) + ς(ℜ− R)2 ≈ ρℜ2σ2ης

lim
m→∞

ς ≈ R(ℜ− R)

ρℜ2σ2η − (ℜ− R)2

Thus, it is evident that the optimal portfolio share is independent of the covariance between
income and returns on equity as wealth grows arbitrarily large. By the approximation employed
in the proof of Proposition 2, this limit is approximately the Merton-Samuelson share. That is

lim
m→∞

ς ≈ ℜ− R

ρσ2η

B Computational Appendix

B.1 Solving the model

I solve the model using a sequential application of the endogenous grid method (Carroll 2006),
dividing a period into two subperiods, the first stage involving a consumption decision (c), and
the second involving the portfolio optimization problem (ς). This description largely pertains
to the finite-horizon version, though the infinite-horizon solution merely replaces periods with a
sequence of guesses.

Construct a grid of assets A = [a = a1 < a2 < ... < ak = a]. To solve the problem pertaining to
any period t, observe from equation (9) that whenever ai ̸= 0, the optimal share of risky assets
is given by the choice of ς̂t+1(ai) ∈ [0, 1] such that

n−3Γ−ρ
t+1

n3∑
j=1

(ℜηi − R)(ψjct+1(mij))
−ρ = 0 (11)

where
mij =

R+ ς̂t+1(ai)(ℜηj − R)

Γt+1ψj
ai + θj

The problem then becomes a root-finding operation pertaining to a function of ς̂, which, given
a policy function ct+1, yields an optimal level of ς̂ for each ai. Denote this pair as (a, ς̂)i, and
the resulting effective return R+ ς̂i(ℜηj − R) for each value of the shocks as Rij .

For each end-of-period outcome (a, ς̂)i, given ct+1, we can use the consumption Euler equation
to get

[ĉt(ai, ς̂i)]
−ρ = βΓ−ρ

t+1n
−3

n3∑
j=1

Rij(ψjct+1(mij))
−ρ

where ĉ denotes that this yields a consumed function of the assets and portfolio share. This
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function is then given by

ĉt(ai, ς̂i) =

βΓ−ρ
t+1n

−3
n3∑
j=1

Rij(ψjct+1(mij))
−ρ

− 1
ρ

Now we have a vector of ĉi corresponding to each (a, ς̂)i. Since mt = ct+at+1, we can construct
the grid M with each mi ∈ M given by mi = ĉi + ai, where ĉi = ĉt(ai, ς̂i). We can now
rewrite ct(mi) = ĉt(ai, ς̂i) and ςt+1(mi) = ς̂t+1(ai), and interpolate to get the policy functions
(ct(m), ςt+1(m)) = gt(m) for period t.16 In the finite-horizon case, the model can be solved
using cT (m) = m as the initial policy function and iterating backwards till period 0. For the
infinite-horizon case, I use a guess c0(m) to obtain a sequence of guesses {ck(m), ςk(m)}Kk=0

that converge to the true policy functions c(m) and ς(m). Since my focus is not on life-cycle
applications, I solve each model with a constant permanent growth factor Γ.

B.2 Baseline consumption

Figure B.1. Optimal consumption function in the buffer-stock model

16While I use linear interpolation by default, cubic-spline interpolation yields similar results for the consumption
function. However, due to drastic directional changes in the optimal portfolio share, spline interpolation
sometimes suggests a portfolio share outside the interval [0, 1].
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B.3 Last Period Optimal Portfolio Allocation

Figure B.2. Optimal portfolio allocation in the second-to-last period
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